摘要
:
The native extracellular matrix (ECM) provides a matrix to hold tissue/organ, defines the cellular fate and function, and retains growth factors. Such a matrix is considered as a most biomimetic scaffold for tissue engineering due...
展开
The native extracellular matrix (ECM) provides a matrix to hold tissue/organ, defines the cellular fate and function, and retains growth factors. Such a matrix is considered as a most biomimetic scaffold for tissue engineering due to the biochemical and biological components, 3D hierarchical structure, and physicomechanical properties. Several attempts have been performed to decellularize allo-or xeno-graft tissues and used them for bone repairing and regeneration. Decellularized ECM (dECM) technology has been developed to create an in vivo like microenvironment to promote cell adhesion, growth, and differentiation for tissue repair and regeneration. Decellularization is mediated through physical, chemical, and enzymatic methods. In this review, we describe the recent progress in bone decellularization and their applications as a scaffold, hydrogel, bioink, or particles in bone tissue engineering. Furthermore, we address the native dECM limitations and the potential of non-bone dECM, cell-based ECM, and engineered ECM (eECM) for in vitro osteogenic differentiation and in vivo bone regeneration.
收起