摘要
:
The ionic materials consisting of cationic Ru complexes and Wells-Dawson polyoxometalate anion (POM, K6P2W18O62) have been constructed via a non-covalent interaction. The as-synthesized catalysts have been characterized thoroughly...
展开
The ionic materials consisting of cationic Ru complexes and Wells-Dawson polyoxometalate anion (POM, K6P2W18O62) have been constructed via a non-covalent interaction. The as-synthesized catalysts have been characterized thoroughly by NMR, XRD, FESEM, and FT-IR, etc. The characterization suggested that a hydrogen bond interaction occurred between the proton of the amine ligand in the cationic Ru complexes and the oxygen atom of the POM anion. The hydrogen bond played an important role in enhancing catalytic activity for the transfer hydrogenation of methyl levulinate (ML) to gamma-valerolactone (GVL) under very mild conditions. Especially, the transfer hydrogenation reaction proceeded via a heterogeneous catalysis approach and the heterogenized catalysts even afforded much better catalytic performance than homogeneous analogs. Notably, the catalysts can be recycled without an obvious loss of activity, and further extended to highly selective transfer hydrogenation of alpha,beta-unsaturated ketones and aldehydes, etc. into the corresponding alpha,beta-unsaturated alcohols without any base external additives. The high catalytic performance of these anchored catalysts was highly related to the hydrogen bond interaction and the basicity of the polyanion. The obtained knowledge from this work could lead us to a new catalysis concept of tethering active homogeneous complexes for constructing highly active anchored Ru complex catalysts for hydrogenation reaction.
收起