摘要
:
Africa is poised for a revolution in the quality and relevance of weather predictions, with potential for great benefits in terms of human and economic security. This revolution will be driven by recent international progress in n...
展开
Africa is poised for a revolution in the quality and relevance of weather predictions, with potential for great benefits in terms of human and economic security. This revolution will be driven by recent international progress in nowcasting, numerical weather prediction, theoretical tropical dynamics, and forecast communication, but will depend on suitable scientific investment being made. The commercial sector has recognized this opportunity and new forecast products are being made available to African stakeholders. At this time, it is vital that robust scientific methods are used to develop and evaluate the new generation of forecasts. The Global Challenges Research Fund (GCRF) African Science for Weather Information and Forecasting Techniques (SWIFT) project represents an international effort to advance scientific solutions across the fields of nowcasting, synoptic and short-range severe weather prediction, subseasonal-to-seasonal (S2S) prediction, user engagement, and forecast evaluation. This paper describes the opportunities facing African meteorology and the ways in which SWIFT is meeting those opportunities and identifying priority next steps. Delivery and maintenance of weather forecasting systems exploiting these new solutions requires a trained body of scientists with skills in research and training, modeling and operational prediction, and communications and leadership. By supporting partnerships between academia and operational agencies in four African partner countries, the SWIFT project is helping to build capacity and capability in African forecasting science. A highlight of SWIFT is the coordination of three weather forecasting "Testbeds"-the first of their kind in Africa-which have been used to bring new evaluation tools, research insights, user perspectives, and communications pathways into a semioperational forecasting environment.
收起