摘要 : Federated learning (FL) involves training machine learning models over distributed edge nodes (<italic>i.e.</italic>, workers) while facing three critical challenges, edge heterogeneity, Non-IID data and communication resource con... 展开
作者 | Qianpiao Ma Yang Xu Hongli Xu Zhida Jiang Liusheng Huang He Huang |
---|---|
作者单位 | |
期刊名称 | 《Selected Areas in Communications, IEEE Journal on 》 |
页码/总页数 | 3654-3672 / 19 |
语种/中图分类号 | 英语 / TN |
关键词 | Training Servers Computational modeling Data models Collaborative work Analytical models Edge computing Edge computing federated learning semi-asynchronous mechanism heterogeneity non-IID |
DOI | 10.1109/JSAC.2021.3118435 |
馆藏号 | IELEP0228 |