摘要
:
Heat stress and mastitis adversely affect milk production in dairy ruminants. Although the udder temperature is elevated in both conditions, the influence of this local temperature rise on milk production and immune function of ru...
展开
Heat stress and mastitis adversely affect milk production in dairy ruminants. Although the udder temperature is elevated in both conditions, the influence of this local temperature rise on milk production and immune function of ruminant mammary glands remains unclear. To address this question, we heated the mammary glands of goats by covering one half of the udder with a disposable heating pad for 24 h, the other uncovered half served as a control. Sixteen Tokara goats (1-5 parity) and three Shiba goats (1-2 parity) at the mid-lactation stage were individually housed, fed 0.6 kg of hay cubes and 0.2 kg of barley per day, and had free access to water and trace-mineralized salt blocks. Milk samples were collected every 6 h for 24 h after covering (n = 16), and deep mammary gland tissue areas were collected after 24 h (n = 5). The concentrations of antimicrobial components [lactoferrin, beta-defensin-1, cathelicidin-2, cathelicidin-7, and immunoglobulin A (IgA)] in milk were measured by the enzyme-linked immunosorbent assay (ELISA). The localization of IgA was examined by immunohistochemistry. The mRNA expression and protein concentrations of C-C motif chemokine ligand-28 (CCL-28) and interleukin (IL)-8 in the mammary gland tissue were measured using quantitative polymerase chain reaction and ELISA, respectively. The somatic cell count in milk was significantly higher in the local heat-treatment group than in the control group after 12 h of treatment. The treatment group had significantly higher concentrations of cathelicidin-2 and IgA than the control group after 24 h of treatment. In addition, the number of IgA-positive cells in the mammary stromal region and the concentration of CCL-28 in the mammary glands were increased by local heat treatment. In conclusion, a local rise in udder temperature enhanced the innate immune function in mammary glands by increasing antimicrobial components.
收起