摘要
:
Estimating large herbivore density has been a major area of research in recent decades. Previous studies monitoring ungulate density, however, focused mostly on determining animal abundance, and did not interpret animal distributi...
展开
Estimating large herbivore density has been a major area of research in recent decades. Previous studies monitoring ungulate density, however, focused mostly on determining animal abundance, and did not interpret animal distribution in relation to habitat parameters. We surveyed large ungulates in the Biodiversity Exploratory Schorfheide-Chorin using faecal pellet group counts. This allowed us to explore the link between relative ungulate abundance, habitat use, and browsing damage on trees in a region with several types of forest, including unharvested and age-class beech forests, as well as age-class pine forests. Our results demonstrate that roe deer and fallow deer relative abundance is negatively correlated with large tree cover, and positively correlated with the cover of small shrubs (<i>Rubus spec.</i>, <i>Vaccinium spec.</i>), and winter food supply. Habitat use of roe deer and fallow deer, as estimated by counting faecal pellet groups, revealed a preference for mature pine forests, and avoidance of deciduous forests. This differential habitat use is explained by different distributions of high quality food resources during winter. The response of deer to understory cover differed between roe deer and fallow deer at high cover percentages. The amount of browsing damage we observed on coniferous trees was not consistent with the relative deer abundance. Browsing damage was consistently higher on most deciduous trees, except for beech saplings which sustained less damage when roe deer density was low. Because roe deer is a highly selective feeder, it was reported to affect tree diversity by feeding only on trees with high nutritional value. Consequently, we propose that managing the number of all deer species by hunting is necessary to allow successful forest regeneration. Such an adjustment to deer numbers would need to account for both current tree diversity and alternative food resources. Our findings may be applicable to other forest landscapes in northeastern Germany including mature pine stands and differently harvested deciduous forests.Digital Object Identifier http://dx.doi.org/10.1016/j.foreco.2010.10.022
收起