摘要 : Motivated by robust matrix recovery problems such as Robust Principal Component Analysis, we consider a general optimization problem of minimizing a smooth and strongly convex loss function applied to the sum of two blocks of vari... 展开
作者 | Garber~ Dan Kaplan~ Atara Sabach~ Shoham |
---|---|
作者单位 | |
期刊名称 | 《Mathematical Programming》 |
总页数 | 24 |
语种/中图分类号 | 英语 / O1 |
关键词 | Conditional gradient method Frank-Wolfe algorithm Convex optimization Robust PCA Low-rank matrix recovery Low-rank optimization Semidefinite programming Nuclear norm minimization |
馆藏号 | N2008EPST0011635 |