摘要 : In this paper, we present an agglomerative fuzzy $k$-means clustering algorithm for numerical data, an extension to the standard fuzzy $k$-means algorithm by introducing a penalty term to the objective function to make the cluster... 展开
作者 | Li~ M.J. Ng~ M.K. Cheung~ Y.-m. Huang~ J.Z. |
---|---|
作者单位 | |
期刊名称 | 《IEEE Transactions on Knowledge and Data Engineering 》 |
页码/总页数 | 1519-1534 / 16 |
语种/中图分类号 | 英语 / NULL |
关键词 | fuzzy set theory pattern clustering agglomerative fuzzy K-means clustering cluster validation consistent clustering results numerical data objective function penalty term Clustering Data mining Mining methods and algorithms |
DOI | 10.1109/TKDE.2008.88 |
馆藏号 | IELEP0258 |