《Biosensors & Bioelectronics: The International Journal for the Professional Involved with Research, Technology and Applications of Biosensers and Related Devices》 2004年20卷3期
摘要
:
The engineering of human tissue represents a major paradigm shift in clinical medicine. Early embodiments of tissue engineering are currently being taken forward to the clinic by production methods that are essentially extensions ...
展开
The engineering of human tissue represents a major paradigm shift in clinical medicine. Early embodiments of tissue engineering are currently being taken forward to the clinic by production methods that are essentially extensions of laboratory manual procedures. However, to achieve the status of routine large-scale clinical practice, automation and scale-out processes are required. This in turn will require the development of reliable on-line monitoring and control systems. This paper examines one demand of crucial importance, namely the real time in vitro monitoring of the flow characteristics through growing tissue since this has a complex interrelationship. Doppler optical coherence tomography (DOCT) is a recently developed imaging technique for studying the theological properties of tissues in vivo. Capable of non-invasive imaging in real time with high resolution, it is potentially ideal for the continuous monitoring of engineered tissues in vitro. As a base line, the current status of DOCT in vivo is therefore reviewed.This paper also reports the first preliminary use of DOCT in tissue engineering. The application described involves the imaging of a fully developed laminar flow through a combined tissue fabrication/bioreactor with a tissue-engineered construct (substitute blood vessel) in situ. (C) 2004 Elsevier B.V. All rights reserved.
收起