摘要
:
Identifying nonrandom clade diversification is a critical first step toward understanding the evolutionary processes underlying any radiation and how best to preserve future phylogenetic diversity. However, differences in diversif...
展开
Identifying nonrandom clade diversification is a critical first step toward understanding the evolutionary processes underlying any radiation and how best to preserve future phylogenetic diversity. However, differences in diversification rates have not been quantitatively assessed for the majority of groups because of the lack of necessary analytical tools (e.g., complete species-level phylogenies, estimates of divergence times, and robust statistics which incorporate phylogenetic uncertainty and test appropriate null models of clade growth). Here, for the first time, we investigate diversification rate heterogeneity in one of the largest groups studied thus far, the bats (Mammalia: Chiroptera). We use a recent, robust statistical approach (whole-tree likelihood-based relative rate tests) on complete dated species-level supertree phylogenies. As has been demonstrated previously for most other groups, among-lineage diversification rate within bats has not been constant. However, we show that bat diversification is more heterogeneous than in other mammalian clades thus far studied. The whole-tree likelihood-based relative rates tests suggest that clades within the families Phyllostomidae and Molossidae underwent a number of significant changes in relative diversification rate. There is also some evidence for rate shifts within Pteropodidae, Emballonuridae, Rhinolophidae, Hipposideridae, and Vespertilionidae, but the significance of these shifts depends on polytomy resolution within each family. Diversification rate in bats has also not been constant, with the largest diversification rate shifts occurring 3050 million years ago, a time overlapping with the greatest number of shifts in flowering plant diversification rates.
收起