摘要 : Objective: Deep neural networks have been recently applied to lesion identification in fluorodeoxyglucose (FDG) positron emission tomography (PET) images, but they typically rely on a large amount of well-annotated data for model ... 展开
作者 | Xinyi Yang Bennett B. Chin Michael Silosky Jonathan Wehrend Daniel V. Litwiller Debashis Ghosh Fuyong Xing |
---|---|
作者单位 | |
页码/总页数 | 679-688 / 10 |
语种/中图分类号 | 英语 / R318 |
关键词 | Lesions Annotations Data models Adaptation models Training Positron emission tomography Image segmentation |
DOI | 10.1109/TBME.2023.3315268 |
馆藏号 | IELEP0027 |