摘要 : Concept drift refers to changes in the distribution of underlying data and is an inherent property of evolving data streams. Ensemble learning, with dynamic classifiers, has proved to be an efficient method of handling concept dri... 展开
作者 | Anjin Liu Jie Lu Guangquan Zhang |
---|---|
作者单位 | |
期刊名称 | 《Neural Networks and Learning Systems, IEEE Transactions on 》 |
页码/总页数 | 293-307 / 15 |
语种/中图分类号 | 英语 / TM |
关键词 | Heuristic algorithms Learning systems Indexes Adaptation models Estimation Machine learning algorithms Benchmark testing |
DOI | 10.1109/TNNLS.2020.2978523 |
馆藏号 | IELEP0378 |