尊敬的各位读者:
根据当前疫情防控要求,我馆部分原文传递服务可能会有延期,无法在24小时内提供,给您带来的不便敬请谅解!
国家工程技术图书馆
2022年11月29日
摘要 : 针对强混沌背景噪声下传统方法难以检测微弱目标信号的问题,研究了混沌相空间重构理论和麻雀寻优算法,提出一种基于优化长短时记忆网络(LSTM)的混沌背景下微弱信号检测方法。利用麻雀搜索算法优化LSTM模型参数,提高模型预测精度,降低目标检测门限,结合... 展开 针对强混沌背景噪声下传统方法难以检测微弱目标信号的问题,研究了混沌相空间重构理论和麻雀寻优算法,提出一种基于优化长短时记忆网络(LSTM)的混沌背景下微弱信号检测方法。利用麻雀搜索算法优化LSTM模型参数,提高模型预测精度,降低目标检测门限,结合LSTM模型进行单步预测,利用预测误差从强海杂波背景下检测出微弱目标信号。以Lorenz混沌系统作为混沌背景进行仿真实验,对叠加的小信号进行检测,结果表明,该方法能够有效地检测微弱信号,其预测的均方根误差0.00171(信噪比为-137.707 dB),相较于传统神经网络预测模型、LSTM预测模型、GA-LSTM预测模型、PSO-LSTM预测模型均有显著提升。利用IPIX雷达信号进行预测实验,进一步验证了该方法的有效性。 收起
系统维护,暂停服务。
根据《著作权法》“合理使用”原则,您当前的文献传递请求已超限。
如您有科学或教学任务亟需,需我馆提供文献传递服务,可由单位单位签署《图书馆馆际互借协议》说明情况,我馆将根据馆际互借的原则,为您提供更优质的服务。
《图书馆馆际互借协议》扫描件请发送至service@istic.ac.cn邮箱,《图书馆馆际互借协议》模板详见附件。
根据《著作权法》规定, NETL仅提供少量文献资源原文复制件,用户在使用过程中须遵循“合理使用”原则。
您当日的文献传递请求已超限。