摘要 :
Gemcitabine (Gem) has been a standard first-line drug for pancreatic cancer (PCa) treatment; however, Gem's rapid metabolism and systemic instability (short half-life) limit its clinical outcome. The objective of this study was to...
展开
Gemcitabine (Gem) has been a standard first-line drug for pancreatic cancer (PCa) treatment; however, Gem's rapid metabolism and systemic instability (short half-life) limit its clinical outcome. The objective of this study was to modify Gem into a more stable form called 4-(N)-stearoyl-gemcitabine (4NSG) and evaluate its therapeutic efficacy in patient-derived xenograft (PDX) models from PCa of Black and White patients.Methods 4NSG was synthesized and characterized using nuclear magnetic resonance (NMR), elemental analysis, and high-performance liquid chromatography (HPLC). 4NSG-loaded solid lipid nanoparticles (4NSG-SLN) were developed using the cold homogenization technique and characterized. Patient-derived pancreatic cancer cell lines labeled Black (PPCL-192, PPCL-135) and White (PPCL-46, PPCL-68) were used to assess the in vitro anticancer activity of 4NSG-SLN. Pharmacokinetics (PK) and tumor efficacy studies were conducted using PDX mouse models bearing tumors from Black and White PCa patients.Results 4NSG was significantly stable in liver microsomal solution. The effective mean particle size (hydrodynamic diameter) of 4NSG-SLN was 82 ± 6.7 nm, and the half maximal inhibitory concentration (IC50) values of 4NSG-SLN treated PPCL-192 cells (9 ± 1.1 μM); PPCL-135 (11 ± 1.3 μM); PPCL-46 (12 ± 2.1) and PPCL-68 equaled to 22 ± 2.6 were found to be significantly lower compared to Gem treated PPCL-192 (57 ± 1.5 μM); PPCL-135 (56 ± 1.5 μM); PPCL-46 (56 ± 1.8 μM) and PPCL-68 (57 ± 2.4 μM) cells. The area under the curve (AUC), half-life, and pharmacokinetic clearance parameters for 4NSG-SLN were 3–fourfold higher than that of GemHCl. For in-vivo studies, 4NSG-SLN exhibited a two-fold decrease in tumor growth compared with GemHCl in PDX mice bearing Black and White PCa tumors.Conclusion 4NSG-SLN significantly improved the Gem's pharmacokinetic profile, enhanced Gem's systemic stability increased its antitumor efficacy in PCa PDX mice bearing Black and White patient tumors.
收起
摘要 :
Uveal melanoma (UM) is the principal type of intraocular malignancy in adults. Up to 50% of UM patients develop metastatic disease with very poor survival. There are few drugs available to treat the primary or metastatic UM. This ...
展开
Uveal melanoma (UM) is the principal type of intraocular malignancy in adults. Up to 50% of UM patients develop metastatic disease with very poor survival. There are few drugs available to treat the primary or metastatic UM. This study was undertaken to evaluate the anti-cancer effect of lapatinib and corroborate the potential of HER2 inhibition in the treatment of UM. The anti-UM activity of lapatinib was assessed using cell viability, cell death and cell cycle analysis, and its anti-metastatic actions were evaluated using would healing, invasion and colony formation assays. Immunoblotting was used to substantiate the actions of lapatinib on apoptotic and HER2 signaling. The anti-UM activity of lapatinib was further evaluated in a UM xenograft mouse model. Lapatinib decreased the viability of four UM cell lines (IC 50 : 3.67-6.53 μM). The antiproliferative activity of lapatinib was corroborated in three primary cell lines isolated from UM patient tumors. In UM cell lines, lapatinib promoted apoptosis and cell cycle arrest, and strongly inhibited cell migration, invasion and reproductive cell growth. Lapatinib dysregulated HER2-AKT/ERK/PI3K signalling leading to the altered expression of apoptotic factors and cell cycle mediators in UM cell lines. Importantly, lapatinib suppressed tumourigenesis in mice carrying UM cell xenografts. Together the present findings are consistent with the assertion that HER2 is a viable therapeutic target in UM. Lapatinib is active in primary and metastatic UM as a clinically approved HER2 inhibitor. The activity of lapatinib in UM patients could be evaluated in future clinical trials.
收起
摘要 :
Oxidative damage is a major cause of lung diseases, including pulmonary fibrosis. Laminarin is a kind of polysaccharide extracted from brown algae and plays vital roles in various biological processes. However, the functions and m...
展开
Oxidative damage is a major cause of lung diseases, including pulmonary fibrosis. Laminarin is a kind of polysaccharide extracted from brown algae and plays vital roles in various biological processes. However, the functions and mechanisms of laminarin in pulmonary oxidative damage are poorly understood. This study aimed at investigating the protective effect of laminarin against pulmonary oxidative damage and underlying mechanisms. Human lung fibroblasts MRC-5 cells were treated with hydrogen peroxide to induce oxidative damage. Laminarin treatment was performed before or after hydrogen peroxide treatment, and then major indexes of oxidative damage, including superoxide dismutase (SOD), malondialdehyde (MDA), reduced glutathione (GSH) and catalase (CAT), were quantified by biochemical assays. The expression of oxidation-related factor, nuclear factor erythroid 2 like 2 (NRF2) was analyzed by qPCR, Western blot and immunofluorescence assay. NRF2 knockdown and overexpression were performed by cell transfection to reveal possible mechanisms. Results showed that laminarin treatment of 0.020 mg/mL for 24 h, especially the pre-treatment, could significantly relieve changes in SOD, MDA, GSH and CAT that were altered by hydrogen peroxide, and promote NRF2 mRNA (P?<?0.001). NRF2 protein was also elevated by laminarin, and nuclear translocation was observed. Factors in NRF2 signaling pathways, including KEAP1, NQO1, GCLC and HO1, were all regulated by laminarin. Roles of NRF2 were tested, suggesting that NRF2 regulated the concentration of SOD, MDA, GSH and CAT, suppressed KEAP1, and promoted NQO1, GCLC and HO1. These findings suggested the protective role of laminarin against pulmonary oxidative damage, which might involve the regulation of NRF2 signaling pathways. This study provided information for the clinical application of laminarin to pulmonary diseases like pulmonary fibrosis.
收起
摘要 :
Summary ALUMINUM‐ACTIVATED MALATE TRANSPORTER1 (ALMT1)‐mediated malate exudation from roots is critical for aluminium (Al) resistance in Arabidopsis. Its upstream molecular signalling regulation is not yet well understood. The r...
展开
Summary ALUMINUM‐ACTIVATED MALATE TRANSPORTER1 (ALMT1)‐mediated malate exudation from roots is critical for aluminium (Al) resistance in Arabidopsis. Its upstream molecular signalling regulation is not yet well understood. The role of CALMODULIN‐LIKE24 (CML24) in Al‐inhibited root growth and downstream molecular regulation of ALMT1‐meditaed Al resistance was investigated. CML24 confers Al resistance demonstrated by an increased root‐growth inhibition of the cml24 loss‐of‐function mutant under Al stress. This occurs mainly through the regulation of the ALMT1‐mediated malate exudation from roots. The mutation and overexpression of CML24 leads to an elevated and reduced Al accumulation in the cell wall of roots, respectively. Al stress induced both transcript and protein abundance of CML24 in root tips, especially in the transition zone. CML24 interacts with CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2 (CAMTA2) and promotes its transcriptional activity in the regulation of ALMT1 expression. This results in an enhanced malate exudation from roots and less root‐growth inhibition under Al stress. Both CML24 and CAMTA2 interacted with WRKY46 suppressing the transcriptional repression of ALMT1 by WRKY46. The study provides novel insights into understanding of the upstream molecular signalling of the ALMT1‐depdendent Al resistance.
收起
摘要 :
Retinal diseases are a leading cause of impaired vision and blindness but some lack effective treatments. New therapies are required urgently to better manage retinal diseases. Natural pentacyclic triterpenoids and their derivativ...
展开
Retinal diseases are a leading cause of impaired vision and blindness but some lack effective treatments. New therapies are required urgently to better manage retinal diseases. Natural pentacyclic triterpenoids and their derivatives have a wide range of activities, including antioxidative, anti-inflammatory, cytoprotective, neuroprotective, and antiangiogenic properties. Pentacyclic triterpenoids have great potential in preventing and/or treating retinal pathologies. The pharmacological effects of pentacyclic triterpenoids are often mediated through the modulation of signalling pathways, including nuclear factor erythroid-2 related factor 2, high-mobility group box protein 1, 11β-hydroxysteroid dehydrogenase type 1, and Src homology region 2 domain-containing phosphatase-1. This review summarizes recent in vitro and in vivo evidence for the pharmacological potential of pentacyclic triterpenoids in the prevention and treatment of retinal diseases. Thepresent literature supports the further development of pentacyclic triterpenoids. Future research should now attempt to improve the efficacy and pharmacokinetic behaviour of the agents, possibly by the use of medicinal chemistry and targeted drug delivery strategies.
收起
摘要 :
Background The central autonomic network (CAN) plays a critical role in the body's sympathetic and parasympathetic control. However, functional connectivity (FC) changes of the CAN in patients with multiple system atrophy (MSA) re...
展开
Background The central autonomic network (CAN) plays a critical role in the body's sympathetic and parasympathetic control. However, functional connectivity (FC) changes of the CAN in patients with multiple system atrophy (MSA) remain unknown. Purpose To investigate FC alterations of CAN in MSA patients. Study Type Prospective. Population Eighty‐two subjects (47 patients with MSA [44.7% female, 60.5?±?6.9 years], 35 age‐ and sex‐matched healthy controls [HC] [57.1% female, 62.5?±?6.6?years]). Field Strength/Sequence 3‐T, resting‐state functional magnetic resonance imaging (rs‐fMRI) using gradient echo‐planar imaging (EPI), T1‐weighted three‐dimensional magnetization‐prepared rapid gradient echo (3D MPRAGE) structural MRI. Assessment FC alterations were explored by using core modulatory regions of CAN as seeds, including midcingulate cortex, insula, amygdala, and ventromedial prefrontal cortex. Bartlett factor score (BFS) derived from a factor analysis of clinical assessments on disease severity was used as a grouping factor for moderate MSA (mMSA: BFS?0) and severe MSA (sMSA: BFS?>?0). Statistical Tests For FC analysis, the one‐way ANCOVA with cluster‐level family‐wise error correction (statistical significance level of P?0.025), and post hoc t‐testing with Bonferroni correction or Tamhane's T2 correction (statistical significance level of adjusted‐P?0.05) were adopted. Correlation was assessed using Pearson correlation or Spearman correlation (statistical significance level of P?0.05). Results Compared with HC, patients with MSA exhibited significant FC aberrances between the CAN and brain areas of sensorimotor control, limbic network, putamen, and cerebellum. For MSA patients, most FC alterations of CAN, especially concerning FC between the right anterior insula and right primary sensorimotor cortices, were found to be significantly correlated with disease severity. FC changes were found to be more significant in sMSA group than in mMSA group when compared with HCs. Data Conclusion MSA shows widespread FC changes of CAN, suggesting that abnormal functional integration of CAN may be involved in disease pathogenesis of MSA. Level of Evidence 2 Technical Efficacy Stage 3
收起
摘要 :
BACKGROUND:Infectious diseases have caused huge economic loss and food security issues in fish aquaculture. Current management and breeding strategies heavily rely on the knowledge of regulative mechanisms underlying disease resis...
展开
BACKGROUND:Infectious diseases have caused huge economic loss and food security issues in fish aquaculture. Current management and breeding strategies heavily rely on the knowledge of regulative mechanisms underlying disease resistance. Though the intestinal microbial community was linked with disease infection, there is little knowledge about the roles of intestinal microbes in fish disease resistance. Cynoglossus semilaevis is an economically important and widely cultivated flatfish species in China. However, it suffers from outbreaks of vibriosis, which results in huge mortalities and economic loss.RESULTS:Here, we used C. semilaevis as a research model to investigate the host-microbiome interactions in regulating vibriosis resistance. The resistance to vibriosis was reflected in intestinal microbiome on both taxonomic and functional levels. Such differences also influenced the host gene expressions in the resistant family. Moreover, the intestinal microbiome might control the host immunological homeostasis and inflammation to enhance vibriosis resistance through the microbe-intestine-immunity axis. For example, Phaeobacter regulated its hdhA gene and host cyp27a1 gene up-expressed in bile acid biosynthesis pathways, but regulated its trxA gene and host akt gene down-expressed in proinflammatory cytokines biosynthesis pathways, to reduce inflammation and resist disease infection in the resistant family. Furthermore, the combination of intestinal microbes and host genes as biomarkers could accurately differentiate resistant family from susceptible family.CONCLUSION:Our study uncovered the regulatory patterns of the microbe-intestine-immunity axis that may contribute to vibriosis resistance in C. semilaevis. These findings could facilitate the disease control and selective breeding of superior germplasm with high disease resistance in fish aquaculture. Video Abstract.
收起
摘要 :
Blood-retinal barrier (BRB) breakdown is one of the primary causes of diabetic retinopathy (DR). The pro-inflammatory factor interleukin-1β (IL-1β) was reported to be involved in the induction of BRB breakdown during the pathogene...
展开
Blood-retinal barrier (BRB) breakdown is one of the primary causes of diabetic retinopathy (DR). The pro-inflammatory factor interleukin-1β (IL-1β) was reported to be involved in the induction of BRB breakdown during the pathogenesis of DR. In the present study, we investigated the protective effect of tetramethylpyrazine (TMP), a major active component of the traditional herb Ligusticum chuanxiong, on IL-1β-induced cell death of the rat retinal capillary endothelial TR-iBRB2 cells. Our results showed that IL-1β-induced cell dysfunction in TR-iBRB2 cells via inducing nitrative/oxidative stress; however, such effect was attenuated with the pre-treatment of TMP. The cellular protective effect of TMP was likely to be mediated through the inhibition of inducible nitric oxide synthase (iNOS) expression and leukostasis as well as suppression of reactive oxygen species (ROS) generation, mitochondrial dysfunction and MAPKs activation. These findings significantly contribute to a better understanding of the protective effect of TMP in DR and form the basis of the therapeutic development of TMP in treating such disease in the future.
收起
摘要 :
While the rice-crayfsh culture (RCFP) model, an important aquaculture model in Asia, is generally considered a sustainable model, its sustainability in terms of microbial community profles has not been evaluated. In this study, mu...
展开
While the rice-crayfsh culture (RCFP) model, an important aquaculture model in Asia, is generally considered a sustainable model, its sustainability in terms of microbial community profles has not been evaluated. In this study, multi-kingdom analyses of microbiome profles (i.e., bacteria, archaea, viruses, and eukaryotes) were performed using environmental (i.e., water and sediment) and animal gut (i.e., crayfsh and crab gut) microbial samples from the RCFP and other aquaculture models, including the crab-crayfsh co-culture, crayfsh culture, and crab culture models, to evaluate the sustainability of the RCFP systematically. Results showed that RCFP samples are enriched with a distinct set of microbes, including Shewanella, Ferroplasma, Leishmania, and Siphoviridae, when compared with other aquaculture models. Additionally, most microbes in the RCFP samples, especially microbes from diferent kingdoms, were densely and positively connected, which indicates their robustness against environmental stress. Whereas microbes in diferent aquaculture models demonstrated moderate levels of horizontal gene transfer (HGT) across kingdoms, the RCFP showed relatively lower frequencies of HGT events, especially those involving antibiotic resistance genes. Finally, environmental factors, including pH, oxidation–reduction potential, temperature, and total nitrogen, contributed profoundly to shaping the microbial communities in these aquaculture models. Interestingly, compared with other models, the microbial communities of the RCFP model were less infuenced by these environmental factors, which suggests that microbes in the latter have stronger ability to resist environmental stress. The fndings collectively refect the unique multi-kingdom microbial patterns of the RCFP model and suggest that this model is a sustainable model from the perspective of microbiome profles.
收起
摘要 :
Exposure to aristolochic acid I (AAI) can lead to aristolochic acid nephropathy (AAN), Balkan endemic nephropathy (BEN) and urothelial cancer. The induction of hepatic CYP1A, especially CYP1A2, was considered to detoxify AAI so as...
展开
Exposure to aristolochic acid I (AAI) can lead to aristolochic acid nephropathy (AAN), Balkan endemic nephropathy (BEN) and urothelial cancer. The induction of hepatic CYP1A, especially CYP1A2, was considered to detoxify AAI so as to reduce its nephrotoxicity. We previously found that baicalin had the strong ability to induce CYP1A2 expression; therefore in this study, we examined the effects of baicalin on AAI toxicity, metabolism and disposition, as well as investigated the underlying mechanisms. Our toxicological studies showed that baicalin reduced the levels of blood urea nitrogen (BUN) and creatinine (CRE) in AAI-treated mice and attenuated renal injury induced by AAI. Pharmacokinetic analysis demonstrated that baicalin markedly decreased AUC of AAI in plasma and the content of AAI in liver and kidney. CYP1A induction assays showed that baicalin exposure significantly increased the hepatic expression of CYP1A1/2, which was completely abolished by inhibitors of the Aromatic hydrocarbon receptor (AhR), 3ʹ,4ʹ-dimethoxyflavone and resveratrol, in vitro and in vivo, respectively. Moreover, the luciferase assays revealed that baicalin significantly increased the luciferase activity of the reporter gene incorporated with the Xenobiotic response elements recognized by AhR. In summary, baicalin significantly reduced the disposition of AAI and ameliorated AAI-induced kidney toxicity through AhR-dependent CYP1A1/2 induction in the liver.
收起