摘要 :
The deviation of continuous and discrete complex random variables from the traditional proper and symmetric assumption to a generalized improper and asymmetric characterization (accounting correlation between a random entity and i...
展开
The deviation of continuous and discrete complex random variables from the traditional proper and symmetric assumption to a generalized improper and asymmetric characterization (accounting correlation between a random entity and its complex conjugate), respectively, introduces new design freedom and various potential merits. As such, the theory of impropriety has vast applications in medicine, geology, acoustics, optics, image and pattern recognition, computer vision, and other numerous research fields with our main focus on the communication systems. The journey begins from the design of improper Gaussian signaling in the interference-limited communications and leads to a more elaborate and practically feasible asymmetric discrete modulation design. Such asymmetric shaping bridges the gap between theoretically and practically achievable limits with sophisticated transceiver and detection schemes in both coded/uncoded wireless/optical communication systems. Interestingly, introducing asymmetry and adjusting the transmission parameters according to some design criterion render optimal performance without affecting the bandwidth or power requirements of the systems. This dual-flavored article initially presents the tutorial base content covering the interplay of reality/complexity, propriety/impropriety and circularity/non-circularity and then surveys majority of the contributions in this enormous journey.
收起
摘要 :
Ultra-high bandwidth, negligible latency and seamless communication are envisioned as milestones that will revolutionize the way by which societies create, distribute and consume information. The remarkable expansion of wireless d...
展开
Ultra-high bandwidth, negligible latency and seamless communication are envisioned as milestones that will revolutionize the way by which societies create, distribute and consume information. The remarkable expansion of wireless data traffic has advocated the investigation of suitable regimes in the radio spectrum to satisfy users' escalating requirements and allow the exploitation of massive capacity and massive connectivity. To this end, the Terahertz (THz) frequency band (0.1-10 THz) has received noticeable attention in the research community as an ideal choice for scenarios involving high-speed transmission. As such, in this work, we present an up-to-date review paper to analyze key concepts associated with the THz system architecture. THz generation methods are first addressed by highlighting the recent progress in the devices technology. Moreover, the recently proposed channel models available for propagation at THz band frequencies are introduced. A comprehensive comparison is then presented between the THz wireless communication and its other contenders. In addition, several applications of THz communication are discussed taking into account various scales. Further, we highlight the milestones achieved regarding THz standardization activities. Finally, a future outlook is provided by presenting and envisaging several potential use cases and attempts to guide the deployment of the THz frequency band.
收起
摘要 :
Ultra-high bandwidth, negligible latency and seamless communication are envisioned as milestones that will revolutionize the way by which societies create, distribute and consume information. The remarkable expansion of wireless d...
展开
Ultra-high bandwidth, negligible latency and seamless communication are envisioned as milestones that will revolutionize the way by which societies create, distribute and consume information. The remarkable expansion of wireless data traffic has advocated the investigation of suitable regimes in the radio spectrum to satisfy users’ escalating requirements and allow the exploitation of massive capacity and massive connectivity. To this end, the Terahertz (THz) frequency band (0.1-10 THz) has received noticeable attention in the research community as an ideal choice for scenarios involving high-speed transmission. As such, in this work, we present an up-to-date review paper to analyze key concepts associated with the THz system architecture. THz generation methods are first addressed by highlighting the recent progress in the devices technology. Moreover, the recently proposed channel models available for propagation at THz band frequencies are introduced. A comprehensive comparison is then presented between the THz wireless communication and its other contenders. In addition, several applications of THz communication are discussed taking into account various scales. Further, we highlight the milestones achieved regarding THz standardization activities. Finally, a future outlook is provided by presenting and envisaging several potential use cases and attempts to guide the deployment of the THz frequency band.
收起
摘要 :
Augmenting ground-level communications with flying networks, such as the high-altitude platform system (HAPS), is among the major innovative initiatives of the next generation of wireless systems (6G). Given HAPS quasi-static posi...
展开
Augmenting ground-level communications with flying networks, such as the high-altitude platform system (HAPS), is among the major innovative initiatives of the next generation of wireless systems (6G). Given HAPS quasi-static positioning at the stratosphere, HAPS-to-ground and HAPS-to-air connectivity frameworks are expected to be prolific in terms of data acquisition and computing, especially given the mild weather and quasi-constant wind speed characteristics of the stratospheric layer. This paper explores the opportunities stemming from the realization of cloud-enabled HAPS in the context of telecommunications applications and services. The paper first advocates for the potential physical advantages of deploying HAPS as flying data-centers, also known as super-macro base stations. The paper then describes various cloud services that can be offered from the HAPS and the merits that can be achieved by this integration, such as enhancing the quality, speed, and range of the offered services. The proposed services span a wide range of fields, including satellites, Internet of Things (IoT), ad hoc networks (such as sensor; vehicular; and aerial networks), gaming, and social networks. For each service, the paper illustrates the methods that would be used by cloud providers to offload the service data to the HAPS and enable the cloud customers to consume the service. The paper further sheds light on the challenges that need to be addressed for realizing practical cloud-enabled HAPS, mainly, those related to high energy, processing power, quality of service (QoS), and security considerations. Finally, the paper discusses some open issues on the topic, namely, HAPS mobility and message routing, HAPS security via blockchain and machine learning, artificial intelligence-based resource allocation in cloud-enabled HAPS, and integration with vertical heterogeneous networks.
收起
摘要 :
We propose two types of intelligent reflecting systems based on programmable metasurfaces and mirrors to focus the incident optical power towards a visible light communication receiver. We derive the required phase gradients for t...
展开
We propose two types of intelligent reflecting systems based on programmable metasurfaces and mirrors to focus the incident optical power towards a visible light communication receiver. We derive the required phase gradients for the metasurface array reflector and the required orientations of each mirror in the mirrors array reflector to achieve power focusing. Based on which, we derive the irradiance expressions for the two systems in the detector plane to characterize their performance in terms of aiming and focusing capabilities. We show analytically that the number of reflecting elements along with the relative source - reflector dimensions determine the system power focusing capability. Moreover, we quantify analytically the received power gain compared with reflector-free systems. In addition, we introduce a new simple metric to assess the relative reflectors’ performance for a given source, detector, reflector layout. Finally, we verify the analytical findings regarding absolute and relative reflectors’ performance via numerical simulations.
收起
摘要 :
We propose two types of intelligent reflecting systems based on programmable metasurfaces and mirrors to focus the incident optical power towards a visible light communication receiver. We derive the required phase gradients for t...
展开
We propose two types of intelligent reflecting systems based on programmable metasurfaces and mirrors to focus the incident optical power towards a visible light communication receiver. We derive the required phase gradients for the metasurface array reflector and the required orientations of each mirror in the mirrors array reflector to achieve power focusing. Based on which, we derive the irradiance expressions for the two systems in the detector plane to characterize their performance in terms of aiming and focusing capabilities. We show analytically that the number of reflecting elements along with the relative source - reflector dimensions determine the system power focusing capability. Moreover, we quantify analytically the received power gain compared with reflector-free systems. In addition, we introduce a new simple metric to assess the relative reflectors’ performance for a given source, detector, reflector layout. Finally, we verify the analytical findings regarding absolute and relative reflectors’ performance via numerical simulations.
收起
摘要 :
This paper proposes, and evaluates the benefits of, a hybrid central cloud (CC) and mobile edge computing (MEC) platform, especially introduced to balance the network resources for joint communication and computation. The transmis...
展开
This paper proposes, and evaluates the benefits of, a hybrid central cloud (CC) and mobile edge computing (MEC) platform, especially introduced to balance the network resources for joint communication and computation. The transmission is further empowered by splitting the users’ messages into private and common parts, to mitigate the interference within the CC and MEC platforms. While several power-hungry, computationally-limited unmanned aerial vehicles (UAVs) are deployed at the cell-edge to boost the CC connectivity and relieve part of its computation burden, the CC connects to the base-stations via capacity-limited fronthauls. The paper then considers the problem of maximizing the weighted sum-rate subject to fronthaul and computation capacity, achievable rates, power, delay, and data-split constraints. Thereby determining the beamforming vectors associated with the private and common messages, the computation allocations, and the data-split factors. Such intricate non-convex optimization problem is tackled using an iterative algorithm that relies on well-chosen discrete relaxation, successive convex approximation, and fractional programming, and can be compellingly implemented in a distributed fashion. The simulations illustrate the proposed algorithm’s capabilities for empowering joint communication and computation, and highlight the pronounced role of rate-splitting and common message decoding in alleviating large-scale interference in hybrid CC/MEC networks.
收起
摘要 :
Reliable data transmission is a fundamental challenge in resource-constrained wireless sensor networks. In current implementations, a single bit error requires retransmitting the entire frame. This incurs extra processing overhead...
展开
Reliable data transmission is a fundamental challenge in resource-constrained wireless sensor networks. In current implementations, a single bit error requires retransmitting the entire frame. This incurs extra processing overhead and power consumption, especially for large frames. Frame fragmentation into small blocks with individual error detection codes can reduce the unnecessary retransmission of the correctly received blocks. The optimal block size, however, varies based on the wireless channel conditions. In this paper, we propose an interference-aware frame fragmentation scheme called iFrag. iFrag dynamically adjusts the number of blocks inside a frame based on current channel conditions, and effectively addresses all challenges associated with such dynamic partitioning. Through analytical and experimental results, we show that iFrag achieves up to 3 × improvement in goodput when the channel is noisy, while reducing the delay by 12 % compared to other static fragmentation approaches. On average, it shows a 13 % gain in goodput across all channel conditions used in our experiments. Our testbed results also show that iFrag lowers the energy consumed per useful bit by 60 %, as improved data transmission reliability reduces the number of frame retransmissions which increases the motes energy efficiency.
收起
摘要 :
Solar energy is widely used for electricity generation, heating systems, and indoor environment daytime illumination. Indeed, large amounts of sunlight energy remain insufficiently used. In this work, we aim at employing sunlight ...
展开
Solar energy is widely used for electricity generation, heating systems, and indoor environment daytime illumination. Indeed, large amounts of sunlight energy remain insufficiently used. In this work, we aim at employing sunlight energy for data transmission as a green option for wireless communications. Being emitted by an uncontrollable source, taming the sunlight is a challenging task that requires appropriate technologies to manipulate incident light. Liquid crystal devices are switchable glass technologies that have adequate response time and contrast characteristics for such an application. In this regard, we design a novel dual-cell liquid crystal shutter (DLS) by stacking two liquid crystal cells that operate in opposite manners, and we build our sunlight modulator with an array of DLSs. Then, we adopt time division multiplexing and polarization-based modulation to boost the data rate and eliminate the flickering effect. In addition, we provide mathematical modeling of the system and study its performance in terms of communication and energy consumption. Finally, we introduce some numerical results to examine the impact of multiple parameters on the system's performance and compare it with the state-of-the-art, which showed that our system features higher data rates and extended link ranges.
收起
摘要 :
With the prevalence of orthogonal frequency-division multiplexing (OFDM) in many standards, e.g., IEEE 802.11, IEEE 802.16, DVB-T, and DVB-T2, a number of variant modulation schemes based on OFDM have been proposed, which resort t...
展开
With the prevalence of orthogonal frequency-division multiplexing (OFDM) in many standards, e.g., IEEE 802.11, IEEE 802.16, DVB-T, and DVB-T2, a number of variant modulation schemes based on OFDM have been proposed, which resort to signal sparsity to further enhance spectral efficiency and mitigate the high peak-to-average ratio (PAPR) problem. Among these variants, OFDM with subcarrier number modulation (OFDM-SNM) has been proven to be efficient for simple communication systems with low constellation modulation orders and limited decoding capability. To rigorously verify the performance advantages of OFDM-SNM, we present the study of OFDM-SNM in this paper from the information-theoretic perspective. In particular, we determine an upper bound on the mutual information of OFDM-SNM in closed form by using the log sum inequality. Also, we analyze the optimal pattern utilization probabilities (PUPs) for OFDM-SNM by channel-dependent coding and propose an easy-to-implement iterative algorithm to approach the optimal PUPs. Moreover, considering the practical achievability, we propose a Huffman coding based achievable PUP vector construction scheme to obtain the achievable PUPs and the corresponding achievable rate. We carry out numerical simulations to verify the effectiveness of this study and illustrate the efficiency of the obtained PUPs in comparison with several benchmarks.
收起