摘要 :
Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Nume...
展开
Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (V_S/ V_(BO)), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.
收起
摘要 :
External fire spread has the potential to breach vertical compartmentation and violate the fire safety strategy of a building. The traditional design solution to this has been the use of non-combustible materials and spandrel pane...
展开
External fire spread has the potential to breach vertical compartmentation and violate the fire safety strategy of a building. The traditional design solution to this has been the use of non-combustible materials and spandrel panels but recent audits show that combustible materials are widespread and included in highly complex systems. Furthermore, most jurisdictions no longer require detailing of spandrel panels under many different circumstances. These buildings require rapid investigation using rational scientific methods to be able to adequately classify the fire risk. In this work, we use an extensive experimental campaign of material-scale data to explore the critical parameters driving upward flame spread. Two criteria are outlined using two different approaches. The first evaluates the time to ignition and the time to burnout to assess the ability for a fire to spread, and can be easily determined using traditional means. The second evaluates the preheated flame length as the critical parameter driving flame spread. A wide range of cladding materials are ranked according to these criteria to show their potential propensity to flame spread. From this, designers can use conservative approaches to perform fire risk assessments for buildings with combustible materials or can be used to aid decision-making. Precise estimates of flame spread rates within complex facade systems are not achievable with the current level of knowledge and will require a substantial amount of work to make progress.
收起
摘要 :
Renal cell carcinoma is the most common form of the kidney cancer accounting for more than 85% of the cases of which clear cell renal cell carcinoma (ccRCC) is the major histological subtype. The central molecular signature for cc...
展开
Renal cell carcinoma is the most common form of the kidney cancer accounting for more than 85% of the cases of which clear cell renal cell carcinoma (ccRCC) is the major histological subtype. The central molecular signature for ccRCC pathogenesis is the biallelic inactivation of VHL gene due to the??presence of mutations/hyper-methylation/complete gene loss, which results in the downstream HIF activation. These events lead to increased tyrosine kinase receptor signalling pathways (RAS/MEK/ERK pathway, PI3K/AKT/mTOR pathway and NF-?oB pathway), which through their downstream effector proteins causes the cell to proliferate and migrate. Recent studies have shown that VHL inactivation alone is not sufficient to induce the tumor. Mutations in numerous other genes that codes for chromatin modifiers (PBRM1, SETD2 and BAP1) and signalling proteins (PTEN and mTOR) have been identified along with activation of alternate signalling pathways like STAT and Sonic Hedgehog (SHH) pathway. It has also been shown that STAT pathway also works cooperatively with HIF to enhance the tumor progression. However, SHH pathway reactivation resulted in tumor regardless of the VHL status, indicating the complex nature of the tumor at the molecular level. Therefore, understanding the complete aetiology of ccRCC is important for future therapeutics.
收起
摘要 :
Renal cell carcinoma is the most common form of the kidney cancer accounting for more than 85% of the cases of which clear cell renal cell carcinoma (ccRCC) is the major histological subtype. The central molecular signature for cc...
展开
Renal cell carcinoma is the most common form of the kidney cancer accounting for more than 85% of the cases of which clear cell renal cell carcinoma (ccRCC) is the major histological subtype. The central molecular signature for ccRCC pathogenesis is the biallelic inactivation of VHL gene due to the presence of mutations/hyper-methylation/complete gene loss, which results in the downstream MF activation. These events lead to increased tyrosine kinase receptor signalling pathways (RAS/MEK/ ERK pathway, PBK/AKT/mTOR pathway and NF-kB pathway), which through their downstream effector proteins causes the cell to proliferate and migrate. Recent studies have shown that VHL inactivation alone is not sufficient to induce the tumor. Mutations in numerous other genes that codes for chromatin modifiers (PBRM1, SETD2 and BAP1) and signalling proteins (PTEN and mTOR) have been identified along with activation of alternate signalling pathways like STAT and Sonic Hedgehog (SHH) pathway. It has also been shown that STAT pathway also works cooperatively with HTF to enhance the tumor progression. However, SHH pathway reactivation resulted in tumor regardless of the VHL status, indicating the complex nature of the tumor at the molecular level. Therefore, understanding the complete aetiology of ccRCC is important for future therapeutics.
收起
摘要 :
Introduction: AIDS, the acquired immuno deficiency syndrome (sometimes called “Slim disease”) is a fatal illness caused by a retro-virus known asthe Human Immunodeficiency Virus (HIV) which breaks down the body’s immune system,...
展开
Introduction: AIDS, the acquired immuno deficiency syndrome (sometimes called “Slim disease”) is a fatal illness caused by a retro-virus known asthe Human Immunodeficiency Virus (HIV) which breaks down the body’s immune system, leaving the victim vulnerable to a host of life-threatening opportunistic infections, neurological disorders or unusual malignancies.
收起