摘要 :
Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosi...
展开
Human arteries affected by atherosclerosis are characterized by altered wall viscoelastic properties. The possibility of noninvasively assessing arterial viscoelasticity in vivo would significantly contribute to the early diagnosis and prevention of this disease. This paper presents a noniterative technique to estimate the viscoelastic parameters of a vascular wall Zener model. The approach requires the simultaneous measurement of flow variations and wall displacements, which can be provided by suitable ultrasound Doppler instruments. Viscoelastic parameters are estimated by fitting the theoretical constitutive equations to the experimental measurements using an ARMA parameter approach. The accuracy and sensitivity of the proposed method are tested using reference data generated by numerical simulations of arterial pulsation in which the physiological conditions and the viscoelastic parameters of the model can be suitably varied. The estimated values quantitatively agree with the reference values, showing that the only parameter affected by changing the physiological conditions is viscosity, whose relative error was about 27% even when a poor signal-to-noise ratio is simulated. Finally, the feasibility of the method is illustrated through three measurements made at different flow regimes on a cylindrical vessel phantom, yielding a parameter mean estimation error of 25%.
收起
摘要 :
Laboratory test objects are widely used in Doppler ultrasound (US). Although the acoustic properties of in vitro materials are usually known, they are unlikely to match each other, or their in vivo counterparts, exactly. We conduc...
展开
Laboratory test objects are widely used in Doppler ultrasound (US). Although the acoustic properties of in vitro materials are usually known, they are unlikely to match each other, or their in vivo counterparts, exactly. We conducted theoretical and experimental studies of a focused ultrasound beam as it passes from one fluid, through an intervening plastic layer at an oblique angle, and then into a different fluid. Dual mode propagation may occur (i.e., both longitudinal and shear waves can propagate in the plastic layer). Our calculations show that the power transmitted by either mode drops very rapidly to zero at certain critical angles. A range of angles of incidence exists within a focused beam and this, combined with the highly angle-dependent power transmission behaviour, can produce major distortions of Doppler data. These may persist even when the beam axis is not oriented exactly at the critical angle. The total power transmitted depends on all the wave speeds, may involve mode conversion, and is a very complicated function of the angle of incidence. This study reports a practical method for the calculation of power transmission though a plastic layer, and shows how the resulting power vs. angle graph can be used to avoid artefacts in in vitro Doppler studies.
收起
摘要 :
OBJECTIVE: This paper aims at demonstrating that ultrasound Doppler multigate spectral analysis performed with advanced equipment may provide detailed and significant haemodynamic information. METHODS: A novel multigate system was...
展开
OBJECTIVE: This paper aims at demonstrating that ultrasound Doppler multigate spectral analysis performed with advanced equipment may provide detailed and significant haemodynamic information. METHODS: A novel multigate system was recently introduced and shown capable of performing real-time spectral analysis of Doppler data from 64 resolution cells located at different depths from the transducer. The system extends the typical capabilities of conventional Pulsed Wave (PW) equipment by displaying the full spectral content of Doppler signals over an ultrasound scan line rather than in a single resolution cell. In cases where it is appropriate to display the available information in a simpler form, parameters such as the maximum frequency can be extracted from each spectrum, by using conventional or advanced image processing methods. RESULTS: In-vitro experiments show that the multigate system can perform velocity measurements with good accuracy and precision. Examples of in vivo profiles detected from carotid, femoral and radial arteries are presented. In particular, the first results obtained from the aorta are shown. CONCLUSIONS: Blood flow behavior can be accurately investigated using a real-time multigate system which extends Doppler spectral analysis to a whole scan line.
收起
摘要 :
Ultrasound contrast agents (UCAs) are widely used in Doppler studies, either for simple echo enhancement purposes, or to increase the low signal-to-clutter ratio typical of microcirculation investigations. Common to all Doppler te...
展开
Ultrasound contrast agents (UCAs) are widely used in Doppler studies, either for simple echo enhancement purposes, or to increase the low signal-to-clutter ratio typical of microcirculation investigations. Common to all Doppler techniques, which are briefly reviewed in this paper, is the basic assumption that possible phase and amplitude changes in received echoes are only associated with UCA microbubble movements due to the drag force of blood. Actually, when UCAs are insonified, phenomena such as rupture, displacement due to radiation force, and acoustically driven deflation might influence the results of Doppler investigations. In this paper, we investigate the possible Doppler effects of such phenomena by means of a numerical simulation model and a special acousto-optical set-up which allows analysis of the behavior of individual microbubbles over relatively long time intervals. It is thus found that all phenomena produce evident Doppler effects in vitro, but that bubble displacement and deflation in particular, are not expected to significantly interfere with clinical measurements in standard conditions.
收起
摘要 :
Ultrasound contrast agents (UCAs) are widely used in Doppler studies, either for simple echo enhancement purposes, or to increase the low signal-to-clutter ratio typical of microcirculation investigations. Common to all Doppler te...
展开
Ultrasound contrast agents (UCAs) are widely used in Doppler studies, either for simple echo enhancement purposes, or to increase the low signal-to-clutter ratio typical of microcirculation investigations. Common to all Doppler techniques, which are briefly reviewed in this paper, is the basic assumption that possible phase and amplitude changes in received echoes are only associated with UCA microbubble movements due to the drag force of blood. Actually, when UCAs are insonified, phenomena such as rupture, displacement due to radiation force, and acoustically driven deflation might influence the results of Doppler investigations. In this paper, we investigate the possible Doppler effects of such phenomena by means of a numerical simulation model and a special acousto-optical set-up which allows analysis of the behavior of individual microbubbles over relatively long time intervals. It is thus found that all phenomena produce evident Doppler effects in vitro, but that bubble displacement and deflation in particular, are not expected to significantly interfere with clinical measurements in standard conditions.
收起
摘要 :
A 3D model reproducing the biomechanical behavior of human blood vessels is presented. The model, based on a multilayer geometry composed of right generalized cylinders, enables the representation of different vessel morphologies,...
展开
A 3D model reproducing the biomechanical behavior of human blood vessels is presented. The model, based on a multilayer geometry composed of right generalized cylinders, enables the representation of different vessel morphologies, including bifurcations, either healthy or affected by stenoses. Using a finite element approach, blood flow is simulated by considering a dynamic displacement of the scatterers (erythrocytes), while arterial pulsation due to the hydraulic pressure is taken into account through a fluid-structure interaction based on a wall model. Each region is acoustically characterized using FIELD II software, which produces the radio frequency echo signals corresponding to echographic scans. Three acoustic physiological phantoms of carotid arteries surrounded by elastic tissue are presented to illustrate the model's capability. The first corresponds to a healthy blood vessel, the second includes a 50% stenosis, and the third represents a carotid bifurcation. Examples of M mode, B mode and color Doppler images derived from these phantoms are shown. Two examples of M-mode image segmentation and the identification of the atherosclerotic plaque boundaries on Doppler color images are reported. The model could be used as a tool for the preliminary evaluation of ultrasound signal processing and visualization techniques.
收起
摘要 :
In flow-mediated dilation (FMD) studies, brachial artery diameter changes due to reactive hyperaemia are typically measured through manual or automatic analysis of high resolution B-mode images while the stimulus of diameter chang...
展开
In flow-mediated dilation (FMD) studies, brachial artery diameter changes due to reactive hyperaemia are typically measured through manual or automatic analysis of high resolution B-mode images while the stimulus of diameter change, i.e., the flow change, is qualitatively estimated by measuring the mean velocity in the vessel and assuming a parabolic velocity profile. This article describes an experimental approach to simultaneously measure the wall shear rate (WSR) and the diameter variations, through multigate spectral Doppler and B-mode image processing, respectively. By using an ultrasound advanced open platform (ULA-OP), experimental results from the brachial arteries of 15 presumed healthy volunteers have been obtained. The mean increments during reflow against baseline were 105% +/- 22% for the peak WSR and 8% +/- 3% for the FMD. The mean time interval between the WSR peak and the beginning of plateau of diameter waveform was 38 +/- 8 s. The results confirm that in young healthy subjects the postischemic vasodilation of brachial artery is largely correlated to the WSR increase.
收起
摘要 :
Conventional Doppler ultrasound (US) investigations are limited to detect only the axial component of the blood velocity vector. A novel dual-beam method has been recently proposed in which the Doppler angle is estimated through a...
展开
Conventional Doppler ultrasound (US) investigations are limited to detect only the axial component of the blood velocity vector. A novel dual-beam method has been recently proposed in which the Doppler angle is estimated through a reference US beam, and the velocity magnitude through a measuring US beam, respectively. In this study, the performance of such a method has been assessed quantitatively through in vitro and in vivo measurements made in different experimental conditions. In vitro, more than 300 acquisitions were completed using seven transducers to insonify a straight tube phantom at different Doppler angles. In steady laminar flow conditions, the velocity magnitude was measured with mean error of -1.9% (95% confidence interval: -2.33% to -1.47%) and standard deviation of 3.4%, with respect to a reference velocity. In pulsatile flow conditions, reproducibility tests of the entire velocity waveforms provided an average coefficient of variation (CV) of 6.9%. For peak velocity measurements made at five Doppler angles and three flow rates, the intrasession and intersession CVs were in the range 0.8-3.7% and 2.9-10.6%, respectively. The peak systolic velocities (PSVs) in the common carotid arteries of 21 volunteers were estimated with 95% limits of agreement of +/- 9.6 cm/s (intersession). This analysis shows that the proposed dual-beam method is capable of overcoming the Doppler angle ambiguity by producing reliable velocity measurements over a large set of experimental conditions.
收起
摘要 :
A novel technique has been developed for the noninvasive real-time simultaneous assessment of both blood velocity profile and wall displacements in human arteries. The novel technique is based on the use of two ultrasound beams, o...
展开
A novel technique has been developed for the noninvasive real-time simultaneous assessment of both blood velocity profile and wall displacements in human arteries. The novel technique is based on the use of two ultrasound beams, one set at optimal angle for wall motion measurements and the other for blood velocity profile measurements. The technique was implemented on a linear array probe divided into two subapertures. A modified commercial ultrasound machine and a custom PC board based on a high-speed digital signal processor was used to process the quadrature demodulated echo signals and display results in realtime. Flow phantom experiments demonstrated the validity of the technique, providing wall shear rate (WSR) estimates within 10% of the theoretical values. The system was also tested in the common carotid arteries of 16 healthy volunteers (age 30 to 53 y). Results of simultaneous diameter distension and WSR measurements were in agreement with published data.
收起
摘要 :
Ultrasound (US) incident obliquely on a cylindrical vessel is redistributed in space when the propagation path includes walls with acoustic impedance different from that of the surrounding media. We investigated this using low-den...
展开
Ultrasound (US) incident obliquely on a cylindrical vessel is redistributed in space when the propagation path includes walls with acoustic impedance different from that of the surrounding media. We investigated this using low-density polyethylene (PE) as the vessel wall material. Both simulations and experiments were carried out. Direct hydrophone measurements of the acoustic field were made within a half section of the PE tube, and the distribution of backscattered Doppler power along a scan line was obtained using a range-Doppler instrument. Both simulation and hydrophone results demonstrate lateral shadow regions within the lumen. In every one of various Doppler flow experiments conducted, the backscattered Doppler power, compensated for on-axis transducer behaviour, increased with depth. Simulation results for an incident continuous-wave (CW) plane wave show that it tends to be focused by the curvature of the PE tube walls. The wall interactions are, however, angle-dependent and so the behaviour of a focused US beam depends on the beam as well as the walls. This study demonstrates alterations in the spatial distribution of US within a cylindrical vessel as a result of known vessel wall properties. It also provides evidence that local intensity variations within the lumen affect the relative Doppler power backscattered from small sample volumes. (E-mail: ).
收起