摘要 :
We perform a stability analysis of an isolated atomic-sized antiferromagnetic skyrmion (AFM-Sk), formed on the superior layer of a magnetic bilayer. The coupling between both square lattices acts as an effective staggered magnetic...
展开
We perform a stability analysis of an isolated atomic-sized antiferromagnetic skyrmion (AFM-Sk), formed on the superior layer of a magnetic bilayer. The coupling between both square lattices acts as an effective staggered magnetic field that stabilizes the AFM-Sk and reduces its radius. A suitable anisotropy constant of the bottom layer material keeps it close to the homogeneous AFM state. We compare the energy of the AFM-Sk with the energy of the AFM ground state. In addition, an estimation of the energy barrier that protects the skyrmion from being destabilized is provided and its value determined to be in the order of similar to 300 K. The remarkable reduction in the skyrmion radius towards atomic size and avoiding an external magnetic field are key points in order to increase our ability to manipulate AFM-Sk on skyrmionic devices. Our calculations provide an insight into novel ways to create and manipulate AFM-Sk at the atomic scale. (C) 2019 Elsevier Inc. All rights reserved.
收起
摘要 :
Manipulating spin transport enhances the functionality of electronic devices, allowing them to surpass physical constraints related to speed and power. For this reason, the use of van der Waals multiferroics at the interface of he...
展开
Manipulating spin transport enhances the functionality of electronic devices, allowing them to surpass physical constraints related to speed and power. For this reason, the use of van der Waals multiferroics at the interface of heterostructures offers promising prospects for developing high-performance devices, enabling the electrical control of spin information. Our work focuses primarily on a mechanism for multiferroicity in two-dimensional van der Waals materials that stems from an interplay between antiferromagnetism and the breaking of inversion symmetry in certain bilayers. We provide evidence for spin-electrical couplings that include manipulating van der Waals multiferroic edges via external voltages and the subsequent control of spin transport including for fully multiferroic spin field-effect transistors.
收起
摘要 :
We report on the thermal effects on the motion of current-driven massive magnetic skyrmions. The reduced equation for the motion of skyrmion has the form of a stochastic generalized Thiele's equation. We propose an ansatz for the ...
展开
We report on the thermal effects on the motion of current-driven massive magnetic skyrmions. The reduced equation for the motion of skyrmion has the form of a stochastic generalized Thiele's equation. We propose an ansatz for the magnetization texture of a non-rigid single skyrmion that depends linearly with the velocity. By using this ansatz it is found that the skyrmion mass tensor is closely related to intrinsic skyrmion parameters, such as Gilbert damping, skyrmion-charge and dissipative force. We have found an exact expression for the average drift velocity as well as the mean-square velocity of the skyrmion. The longitudinal and transverse mobility of skyrmions for small spin-velocity of electrons is also determined and found to be independent of the skyrmion mass. (C) 2014 Elsevier Inc. All rights reserved.
收起
摘要 :
We provide a model capable of accounting for the multiferroicity in certain materials. The model's base is on free electrons and spin moments coupled within nonrelativistic quantum mechanics. The synergistic interplay between the ...
展开
We provide a model capable of accounting for the multiferroicity in certain materials. The model's base is on free electrons and spin moments coupled within nonrelativistic quantum mechanics. The synergistic interplay between the magnetic and electric degrees of freedom that turns into the multiferroic phenomena occurs at a profound quantum mechanical level, conjured by Berry's phases and the quantum theory of polarization. Our results highlight the geometrical nature of the multiferroic order parameter that naturally leads to magnetoelectric domain walls, with promising technological potential.
收起
摘要 :
We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in ma...
展开
We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.
收起
摘要 :
We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in ma...
展开
We show that the interaction between the spin-polarized current and the magnetization dynamics can be used to implement black-hole and white-hole horizons for magnons-the quanta of oscillations in the magnetization direction in magnets. We consider three different systems: easy-plane ferromagnetic metals, isotropic antiferromagnetic metals, and easy-plane magnetic insulators. Based on available experimental data, we estimate that the Hawking temperature can be as large as 1 K. We comment on the implications of magnonic horizons for spin-wave scattering and transport experiments, and for magnon entanglement.
收起