摘要 :
Abstract Grasslands are widespread and economically relevant ecosystems at the basis of sustainable roughage production. Plant genetic diversity (PGD; i.e., within‐species diversity) is related to many beneficial effects on the e...
展开
Abstract Grasslands are widespread and economically relevant ecosystems at the basis of sustainable roughage production. Plant genetic diversity (PGD; i.e., within‐species diversity) is related to many beneficial effects on the ecosystem functioning of grasslands. The monitoring of PGD in temperate grasslands is complicated by the multiplicity of species present and by a shortage of methods for large‐scale assessments. However, the continuous advancement of high‐throughput DNA sequencing approaches has improved the prospects of broad, multispecies PGD monitoring. Among them, amplicon sequencing stands out as a robust and cost‐effective method. Here, we report a set of 12 multispecies primer pairs that can be used for high‐throughput PGD assessments in multiple grassland plant species. The target loci were selected and tested in two phases: a “discovery phase” based on a sequence capture assay (611 nuclear loci assessed in 16 grassland plant species), which resulted in the selection of 11 loci; and a “validation phase”, in which the selected loci were targeted and sequenced using multispecies primers in test populations of Dactylis glomerata L., Lolium perenne L., Festuca pratensis Huds., Trifolium pratense L. and T.?repens L. The multispecies amplicons had nucleotide diversities per species from 5.19?×?10?3 to 1.29?×?10?2, which is in the range of flowering‐related genes but slightly lower than pathogen resistance genes. We conclude that the methodology, the DNA sequence resources, and the primer pairs reported in this study provide the basis for large‐scale, multispecies PGD monitoring in grassland plants.
收起
摘要 :
Self-incompatibility (SI) is a genetic mechanism of hermaphroditic plants to prevent inbreeding after self-pollination. Allogamous Poaceae species exhibit a unique gametophytic SI system controlled by two multi-allelic and indepen...
展开
Self-incompatibility (SI) is a genetic mechanism of hermaphroditic plants to prevent inbreeding after self-pollination. Allogamous Poaceae species exhibit a unique gametophytic SI system controlled by two multi-allelic and independent loci, S and Z. Despite intense research efforts in the last decades, the genes that determine the initial recognition mechanism are yet to be identified. Here, we report the fine-mapping of the Z-locus in perennial ryegrass (Lolium perenne L.) and provide evidence that the pollen and stigma components are determined by two genes encoding DUF247 domain proteins (ZDUF247-I and ZDUF247-II) and the gene sZ, respectively. The pollen and stigma determinants are located side-by-side and were genetically linked in 10,245 individuals of two independent mapping populations segregating for Z. Moreover, they exhibited high allelic diversity as well as tissue-specific gene expression, matching expected characteristics of SI determinants known from other systems. Revisiting the S-locus using the latest high-quality whole-genome assemblies revealed a similar gene composition and structure as found for Z, supporting the hypothesis of a duplicated origin of the two-locus SI system of grasses. Ultimately, comparative genomic analyses across a wide range of self-compatible and self-incompatible Poaceae species revealed that the absence of a functional copy of at least one of the six putative SI determinants is accompanied by a self-compatible phenotype. Our study provides new insights into the origin and evolution of the unique gametophytic SI system in one of the largest and economically most important plant families.
收起
摘要 :
White clover ( Trifolium repens L.) is one of the most important legumes for fodder production in temperate climates, particularly in intensive pasture systems. Like many other forage legumes, it lacks the energy content to maximi...
展开
White clover ( Trifolium repens L.) is one of the most important legumes for fodder production in temperate climates, particularly in intensive pasture systems. Like many other forage legumes, it lacks the energy content to maximize productivity of modern ruminant livestock breeds. White clover produces water-soluble carbohydrates and starch in its leaves as a diurnal product of photosynthesis. However, little is known about the genetically encoded variability of diel changes in carbohydrate content. We assessed the amount of glucose, fructose, sucrose, and starch in the leaves of 185 plants of a genetically diverse white clover population. Water-soluble carbohydrates only provided on average 10.6% of dry weight (DW) of the total analyzed non-structural carbohydrate (NSC) content at the end of the day (ED), while starch supplied 89.4% of the NSC content. The top 5% of individuals accumulated over 25% of their DW as starch at ED. The leaf starch content at ED showed up to a threefold difference between genotypes, with a repeatability value of 0.95. Our experiments illustrate both the physical potential of white clover to serve as a competitive energy source to meet the demand of modern ruminant livestock production and the genetic potential to improve this trait by breeding.
收起
摘要 :
Xanthomonas translucens pv. graminis (Xtg) is a major bacterial pathogen of economically important forage grasses, causing severe yield losses. So far, genomic resources for this pathovar consisted mostly of draft genome sequences...
展开
Xanthomonas translucens pv. graminis (Xtg) is a major bacterial pathogen of economically important forage grasses, causing severe yield losses. So far, genomic resources for this pathovar consisted mostly of draft genome sequences, and only one complete genome sequence was available, preventing comprehensive comparative genomic analyses. Such comparative analyses are essential in understanding the mechanisms involved in the virulence of pathogens and to identify virulence factors involved in pathogenicity.In this study, we produced high-quality, complete genome sequences of four strains of Xtg, complementing the recently obtained complete genome sequence of the Xtg pathotype strain. These genomic resources allowed for a comprehensive comparative analysis, which revealed a high genomic plasticity with many chromosomal rearrangements, although the strains were highly related. A high number of transposases were exclusively found in Xtg and corresponded to 413 to 457 insertion/excision transposable elements per strain. These mobile genetic elements are likely to be involved in the observed genomic plasticity and may play an important role in the adaptation of Xtg. The pathovar was found to lack a type IV secretion system, and it possessed the smallest set of type III effectors in the species. However, three XopE and XopX family effectors were found, while in the other pathovars of the species two or less were present. Additional genes that were specific to the pathovar were identified, including a unique set of minor pilins of the type IV pilus, 17 TonB-dependent receptors (TBDRs), and 11 plant cell wall degradative enzymes.These results suggest a high adaptability of Xtg, conferred by the abundance of mobile genetic elements, which could play a crucial role in pathogen adaptation. The large amount of such elements in Xtg compared to other pathovars of the species could, at least partially, explain its high virulence and broad host range. Conserved features that were specific to Xtg were identified, and further investigation will help to determine genes that are essential to pathogenicity and host adaptation of Xtg.
收起
摘要 :
Abstract In the last decades, the progress in ryegrass (Lolium spp.) breeding was mainly on agronomic traits such as biomass yield, forage quality or disease resistance. However, for commercial success, a stable and high seed yiel...
展开
Abstract In the last decades, the progress in ryegrass (Lolium spp.) breeding was mainly on agronomic traits such as biomass yield, forage quality or disease resistance. However, for commercial success, a stable and high seed yield is a prerequisite for any cultivar. The realized seed yield is influenced by many different factors such as non‐optimal pollination and fertilization, seed abortion and seed shattering. While seed shattering has been largely eliminated in major cereal crops such as rice, barley or sorghum during domestication, the trait has been largely neglected in ryegrass breeding programs. The close syntenic relationship of cereal and ryegrass genomes offers the opportunity to develop breeding approaches for reducing seed shattering in the latter by transferring knowledge from the former. The objectives of this review are to (1) give an overview on the knowledge of morphology on seed shattering in cereal crops and ryegrasses, (2) compare the genetic background underlying seed shattering in different species, (3) identify putative candidate genes controlling seed shattering in ryegrasses through comparative genomic analysis and (4) give an outlook on new breeding strategies resulting in low seed shattering cultivars of ryegrasses and related forage grass species.
收起
摘要 :
Self-incompatibility (SI) is a mechanism that many flowering plants employ to prevent fertilisation by self- and self-like pollen ensuring heterozygosity and hybrid vigour. Although a number of single locus mechanisms have been ch...
展开
Self-incompatibility (SI) is a mechanism that many flowering plants employ to prevent fertilisation by self- and self-like pollen ensuring heterozygosity and hybrid vigour. Although a number of single locus mechanisms have been characterised in detail, no multi-locus systems have been fully elucidated. Historically, examples of the genetic analysis of multi-locus SI, to make analysis tractable, are either made on the progeny of bi-parental crosses, where the number of alleles at each locus is restricted, or on crosses prepared in such a way that only one of the SI loci segregates. Perennial ryegrass ( Lolium perenne L.) possesses a well-documented two locus ( S and Z ) gametophytic incompatibility system. A more universal, realistic proof of principle study was conducted in a perennial ryegrass population in which allelic and non-allelic diversity was not artificially restricted. A complex pattern of pollinations from a diallel cross was revealed which could not possibly be interpreted easily per se , even with an already established genetic model. Instead, pollination scores were distilled into principal component scores described as Compatibility Components (CC1-CC3). These were then subjected to a conventional genome-wide association analysis. CC1 associated with markers on linkage groups (LGs) 1, 2, 3, and 6, CC2 exclusively with markers in a genomic region on LG 2, and CC3 with markers on LG 1. BLAST alignment with the Brachypodium physical map revealed highly significantly associated markers with peak associations with genes adjacent and four genes away from the chromosomal locations of candidate SI genes, S- and Z-DUF247 , respectively. Further significant associations were found in a Brachypodium distachyon chromosome 3 region, having shared synteny with Lolium LG 1, suggesting further SI loci linked to S or extensive micro-re-arrangement of the genome between B. distachyon and L. perenne . Significant associations with gene sequences aligning with marker sequences on Lolium LGs 3 and 6 were also identified. We therefore demonstrate the power of a novel association genetics approach to identify the genes controlling multi-locus gametophytic SI systems and to identify novel loci potentially involved in already established SI systems.
收起
摘要 :
SUMMARY Bacterial wilt, caused by Xanthomonas translucens pv. graminis (Xtg), is a serious disease of economically important forage grasses, including Italian ryegrass (Lolium multiflorum Lam.). A major QTL for resistance to Xtg w...
展开
SUMMARY Bacterial wilt, caused by Xanthomonas translucens pv. graminis (Xtg), is a serious disease of economically important forage grasses, including Italian ryegrass (Lolium multiflorum Lam.). A major QTL for resistance to Xtg was previously identified, but the precise location as well as the genetic factors underlying the resistance are yet to be determined. To this end, we applied a bulked segregant analysis (BSA) approach, using whole‐genome deep sequencing of pools of the most resistant and most susceptible individuals of a large (n?=?7484) biparental F2 population segregating for resistance to Xtg. Using chromosome‐level genome assemblies as references, we were able to define a ~300?kb region highly associated with resistance on pseudo‐chromosome 4. Further investigation of this region revealed multiple genes with a known role in disease resistance, including genes encoding for Pik2‐like disease resistance proteins, cysteine‐rich kinases, and RGA4‐ and RGA5‐like disease resistance proteins. Investigation of allele frequencies in the pools and comparative genome analysis in the grandparents of the F2 population revealed that some of these genes contain variants with allele frequencies that correspond to the expected heterozygosity in the resistant grandparent. This study emphasizes the efficacy of combining BSA studies in very large populations with whole genome deep sequencing and high‐quality genome assemblies to pinpoint regions associated with a binary trait of interest and accurately define a small set of candidate genes. Furthermore, markers identified in this region hold significant potential for marker‐assisted breeding strategies to breed resistance to Xtg in Italian ryegrass cultivars more efficiently.
收起
摘要 :
Immature pollen can be induced to switch developmental pathways from gametogenesis to embryogenesis and subsequently regenerate into homozygous, diploid plants. Such androgenic production of doubled haploids is particularly useful...
展开
Immature pollen can be induced to switch developmental pathways from gametogenesis to embryogenesis and subsequently regenerate into homozygous, diploid plants. Such androgenic production of doubled haploids is particularly useful for species where inbreeding is hampered by effective self-incompatibility systems. Therefore, increasing the generally low androgenic capacity of perennial ryegrass ( Lolium perenne L.) germplasm would enable the efficient production of homozygous plant material, so that a more effective exploitation of heterosis through hybrid breeding schemes can be realized. Here, we present the results of a genome-wide association study in a heterozygous, multiparental population of perennial ryegrass (n = 391) segregating for androgenic capacity. Genotyping-by-sequencing was used to interrogate gene- dense genomic regions and revealed over 1,100 polymorphic sites. Between one and 10 quantitative trait loci (QTL) were identified for anther response, embryo and total plant production, green and albino plant production and regeneration. Most traits were under polygenic control, although a major QTL on linkage group 5 was associated with green plant regeneration. Distinct genetic factors seem to affect green and albino plant recovery. Two intriguing candidate genes, encoding chromatin binding domains of the developmental phase transition regulator, Polycomb Repressive Complex 2, were identified. Our results shed the first light on the molecular mechanisms behind perennial ryegrass microspore embryogenesis and enable marker-assisted introgression of androgenic capacity into recalcitrant germplasm of this forage crop of global significance.
收起
摘要 :
Accurate, high-throughput phenotyping for quantitative traits is a limiting factor for progress in plant breeding. We developed an automated image analysis to measure quantitative resistance to septoria tritici blotch (STB), a glo...
展开
Accurate, high-throughput phenotyping for quantitative traits is a limiting factor for progress in plant breeding. We developed an automated image analysis to measure quantitative resistance to septoria tritici blotch (STB), a globally important wheat disease, enabling identification of small chromosome intervals containing plausible candidate genes for STB resistance. 335 winter wheat cultivars were included in a replicated field experiment that experienced natural epidemic development by a highly diverse but fungicide-resistant pathogen population. More than 5.4 million automatically generated phenotypes were associated with 13,648 SNP markers to perform the GWAS. We identified 26 chromosome intervals explaining 1.9-10.6% of the variance associated with four independent resistance traits. Sixteen of the intervals overlapped with known STB resistance intervals, suggesting that our phenotyping approach can identify simultaneously (i.e., in a single experiment) many previously defined STB resistance intervals. Seventeen of the intervals were less than 5?Mbp in size and encoded only 173 genes, including many genes associated with disease resistance. Five intervals contained four or fewer genes, providing high priority targets for functional validation. Ten chromosome intervals were not previously associated with STB resistance, perhaps representing resistance to pathogen strains that had not been tested in earlier experiments. The SNP markers associated with these chromosome intervals can be used to recombine different forms of quantitative STB resistance that are likely to be more durable than pyramids of major resistance genes. Our experiment illustrates how high-throughput automated phenotyping can accelerate breeding for quantitative disease resistance.
收起
摘要 :
Biofuels obtained from biomass have the potential to replace a substantial fraction of petroleum-based hydrocarbons that contribute to carbon emissions and are limited in supply. With the ultimate goal to maximize biomass yield fo...
展开
Biofuels obtained from biomass have the potential to replace a substantial fraction of petroleum-based hydrocarbons that contribute to carbon emissions and are limited in supply. With the ultimate goal to maximize biomass yield for biofuel production, this review aims to evaluate prospects of different hybrid breeding schemes to optimally exploit heterosis for biomass yield in perennial ryegrass (Lolium perenne L.) and switchgrass (Panicum virgatum), two perennial model grass species for bioenergy production. Starting with a careful evaluation of current population and synthetic breeding methods, we address crucial topics to implement hybrid breeding, such as the availability and development of heterotic groups, as well as biological mechanisms for hybridization control such as self-incompatibility (SI) and male sterility (MS). Finally, we present potential hybrid breeding schemes based on SI and MS for the two bioenergy grass species, and discuss how molecular tools and synteny can be used to transfer relevant information for genes controlling these biological mechanisms across grass species.
收起