摘要 :
Total parenteral nutrition (TPN) results in a number of derangements to the intestinal epithelium, including a loss of epithelial barrier function (EBF). As TPN supplemented with glutamine has been thought to prevent this loss, th...
展开
Total parenteral nutrition (TPN) results in a number of derangements to the intestinal epithelium, including a loss of epithelial barrier function (EBF). As TPN supplemented with glutamine has been thought to prevent this loss, this article further defined the impact of glutamine on EBF, and investigated potential mechanisms that contributed to the preservation of EBF. C57BL/6J male mice were randomized to enteral nutrition (control), TPN, or TPN supplemented with glutamine (TPN+GLN). Changes in intraepithelial lymphocyte (IEL)-derived cytokine expression were measured, and EBF was assessed with electrophysiologic methods and assessment of junctional protein expression. TPN resulted in a significant decline in EBF, and this loss of EBF was significantly prevented in the TPN+GLN group. Coincident with these changes was a loss of intraepithelial lymphocyte (IEL, mucosal lymphocyte)-derived IL-10 and increase in interferon-gamma (IFN-gamma) expression, and a decline in IEL numbers in the TPN group. A prevention in the increase in IFN-gamma and decline in IL-10 expression was seen in the TPN+GLN group. To determine the mechanism responsible for these glutamine-associated cytokine changes, we tested whether blockade of the IL-7 signaling pathway between epithelial cells (EC) and IEL would prevent these changes; however, blockade failed to influence IEL-derived cytokine changes. Glutamine-supplemented TPN leads to a specific IEL-derived cytokine profile, which may account for the preservation of EBF; and such action may be due to a direct action of glutamine on the IEL.
收起
摘要 :
Green tea and its major constituent epigallocatechin gallate (EGCG) are known for their chemopreventive effects including those against prostate cancer, which could be mediated by metal ions. Zn(2+) is an essential trace element t...
展开
Green tea and its major constituent epigallocatechin gallate (EGCG) are known for their chemopreventive effects including those against prostate cancer, which could be mediated by metal ions. Zn(2+) is an essential trace element that is required for human health and plays an important role in the normal function of the prostate gland. In the present study, the effect of EGCG on cell membrane and mitochondria of PC-3 (prostate carcinoma) cells in the presence and absence of Zn(2+) was studied. These studies revealed that EGCG, Zn(2+), or EGCG + Zn(2+) affected the morphology of PC-3 cells and induced apoptosis in PC-3 cells. It was observed that effects of treatment with EGCG, Zn(2+), or EGCG + Zn(2+)on mitochondria showed EGCG + Zn(2+) > Zn(2+) > EGCG, including cytochrome C release from the intermembrane space into the cytosol, inhibited the synthesis of ATP, loss of mitochondrial membrane potential, and activation of caspase-9. However, the order of effect on depressing membrane fluidity of PC-3 cells was EGCG > EGCG + Zn(2+) > Zn(2+). In summary, these findings suggest that EGCG, Zn(2+), and EGCG + Zn(2+) induce necrosis or apoptosis of PC-3 cells through mitochondria-mediated apoptotic pathway and free Zn(2+)-enhanced effects of EGCG on PC-3 cells due to its interactions with mitochondria.
收起
摘要 :
Rho GTPases, such as cell division cycle 42 (Cdc42) and ras-related C3 botulinum toxin substrate 1 (Rac1), have been identified as regulators of F-actin dynamics and hormone release from endocrine cells; however, their role in sec...
展开
Rho GTPases, such as cell division cycle 42 (Cdc42) and ras-related C3 botulinum toxin substrate 1 (Rac1), have been identified as regulators of F-actin dynamics and hormone release from endocrine cells; however, their role in secretion of the incretin hormone, glucagon-like peptide-1 (GLP-1), from the enteroendocrine L cell is unknown. Insulin induced a 1.4-fold increase in L cell GLP-1 release; however, secretion was potentiated to 2.1-fold in the presence of the F-actin depolymerizing agent, latrunculin B, suggesting that F-actin functions as a permissive barrier. In murine GLUTag L cells, insulin stimulated F-actin depolymerization and Cdc42 activation simultaneously, and these events occurred prior to detectable increases in insulin-induced GLP-1 release. After insulin treatment, Cdc42-dependent p21-activated kinase-1 (PAK1) activation was also detected, and transfection of small-interfering RNA against Cdc42 or of dominant-negative Cdc42(T17N) impaired insulin-stimulated PAK1 activation, actin remodeling, and GLP-1 secretion. Overexpression of kinase-dead PAK1(K299R) or PAK1 small interfering RNA similarly attenuated insulin-induced GLP-1 secretion. Knockdown or inhibition of Cdc42 and PAK1 activities also prevented activation of MAPK/ERK (MEK)-1/2-ERK1/2 by insulin, which was previously identified as a critical pathway for insulin-regulated GLP-1 release. Taken together, these data identify a novel signaling pathway in the endocrine L cell, whereby Cdc42 regulates actin remodeling, activation of the cannonical 1/2-ERK1/2 pathway and PAK1, and GLP-1 secretion in response to insulin.
收起
摘要 :
The transfer of nutrients from agricultural land to waters attracts the attention of policy makers as well as scientists as it plays an increasingly significant role in affecting the water environment. It is therefore essential to...
展开
The transfer of nutrients from agricultural land to waters attracts the attention of policy makers as well as scientists as it plays an increasingly significant role in affecting the water environment. It is therefore essential to first understand the nutrient flow in agricultural systems and then correspondingly formulate a series of cost-effective policies and best management practices (BMPs). On the basis of an emission inventory analysis (EIA) and a nutrient full balance (NFB) calculation, this paper presents a partial substance flow analysis (SFA) method, as well as an Agricultural Phosphorus Flow Analysis (AgiPhosFA) model, to describe the phosphorus (P) flow in the agricultural systems in China and assess the impact of human activities on waters driven by agriculture and rural life. It is estimated that average P input and output were 28.9 kg ha~(-1) a~(-1) and 14.2 kg ha~(-1) a~(-1) respectively in China in 2004, while the total P utilization efficiency (Plant uptake P/P input) in agriculture was 45.7% leading to an average P surplus of 14.7 kg ha~(-1) a~(-1). Excessive P application through mineral fertilizer in the arable farming system has led to the accumulation of soil P and constituted a risk to the recipient water quality, whereas the grassland grazing system is confronted with a severe P deficit problem which has resulted in widespread grass degradation. Therefore it may be an efficient way to mitigate the problems simultaneously by regulating and balancing the P flows between the two systems. Uncertainties of the method and model are also discussed in terms of model conceptualization, data and parameters, and spatial and temporal variability.
收起
摘要 :
Traumatic spinal cord injury (SCI) causes marked neuropathological changes in the spinal cord, resulting in limited functional recovery. Currently, there are no effective treatments, and the mechanisms underlying these neuropathol...
展开
Traumatic spinal cord injury (SCI) causes marked neuropathological changes in the spinal cord, resulting in limited functional recovery. Currently, there are no effective treatments, and the mechanisms underlying these neuropathological changes are not completely understood. In this study, two-dimensional gel electrophoresis coupled with mass spectrometry was used to investigate injury-related changes in the abundance (SYPRO Ruby stain) and phosphorylation (Pro-Q Diamond stain) of proteins from the soluble fraction of the lesion epicenter at 24 h following SCI. Over 1500 SYPRO Ruby-stained spots and 100 Pro-Q Diamond-stained spots were examined. We identified 26 unique proteins within 38 gel spots that differentially changed in abundance, phosphorylation, or both in response to SCI. Protein redundancies among the gel spots were likely due to differences in proteolysis, post-translational modifications, and the existence of isoforms. The proteins affected were blood-related proteins, heat-shock proteins, glycolytic enzymes, antioxidants, and proteins that function in cell structure, cell signaling, DNA damage, and protein degradation. These protein changes post injury may suggest additional avenues of investigation into the underlying molecular mechanisms responsible for the pathophysiological consequences of SCI.
收起
摘要 :
The osteogenic differentiation potential of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) has been documented previously, and partially demineralized bone matrix (pDBM) represents a promising candidate for bone ti...
展开
The osteogenic differentiation potential of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) has been documented previously, and partially demineralized bone matrix (pDBM) represents a promising candidate for bone tissue engineering scaffolds. In this study, pDBM scaffolds derived from porcine cancellous bone were evaluated for their ability to support human UCB-MSCs osteogenic differentiation in vitro and bone-forming capacity in vivo to assess the potential use of UCB-MSCs in bone tissue engineering applications. MSCs were isolated from full-term human UCB and expanded, and their cell surface antigen markers and multilineage capability to differentiate into osteoblasts, chondrocytes, and adipocytes were analyzed. The in vitro proliferation and osteogenic differentiation of UCB-MSCs loaded onto the three-dimensional pDBM scaffolds were determined. Critical-sized full-thickness circular defects (5 mm in diameter) created bilaterally in the parietal bones of athymic rats were treated with one of the following: osteogenically induced UCB-MSC/pDBM composites (Group A, n = 8), noninduced UCB-MSC/pDBM composites (Group B, n = 8), pDBM alone (Group C, n = 8), or left untreated (Group D, n = 8). Microcomputed tomography analysis showed that new bone was formed in Group A at 6 weeks postimplantation, and greater bone volume and density were found after 12 weeks. In other groups, new bone formation was not evident after 6 weeks, and no bone union was found at 12 weeks. Histological examination revealed that the defect was repaired by tissue-engineered bone in Group A at 12 weeks, and fibrous union was observed in Groups B, C, and D. These results demonstrate that pDBM can support osteogenic differentiation of human UCB-MSCs in vitro and in vivo, and UCB-MSCs may serve as an alternative cell source for bone tissue engineering and regeneration.
收起
摘要 :
The porcine reproductive and respiratory syndrome virus nsp1 is predicted to be auto-cleaved from the replicase polyprotein into nsp1alpha and nsp1beta subunits. In infected cells, we detected the actual existence of nsp1alpha and...
展开
The porcine reproductive and respiratory syndrome virus nsp1 is predicted to be auto-cleaved from the replicase polyprotein into nsp1alpha and nsp1beta subunits. In infected cells, we detected the actual existence of nsp1alpha and nsp1beta. Cleavage sites between nsp1alpha/nsp1beta and nsp1beta/nsp2 were identified by protein microsequencing analysis. Time course study showed that nsp1alpha and nsp1beta mainly localize into the cell nucleus after 10 h post infection. Further analysis revealed that both proteins dramatically inhibited IFN-beta expression. The nsp1beta was observed to significantly inhibit expression from an interferon-stimulated response element promoter after Sendai virus infection or interferon treatment. It was further determined to inhibit nuclear translocation of STAT1 in the JAK-STAT signaling pathway. These results demonstrated that nsp1beta has ability to inhibit both interferon synthesis and signaling, while nsp1alpha alone strongly inhibits interferon synthesis. These findings provide important insights into mechanisms of nsp1 in PRRSV pathogenesis and its impact in vaccine development.
收起
摘要 :
A mobile multimedia CDMA system with multiple links between a user and radio ports is introduced in this paper. We propose a centralized reservation access control scheme with transmission scheduling and allocation algorithm suppo...
展开
A mobile multimedia CDMA system with multiple links between a user and radio ports is introduced in this paper. We propose a centralized reservation access control scheme with transmission scheduling and allocation algorithm supporting various types of multimedia traffic. Two types of allocation algorithms, a local and a global algorithm, are also proposed. The allocation algorithms allocate a set of ports to configure multiple radio links and transmission slot / power to each scheduled transmission requests. We evaluate the performance of the proposed CDMA system and control algorithms, and compare it with a distributed random access CDMA system and a dynamic TDMA system. It is shown that the global algorithm is the best and the random transmission method the worst in performance. It is also noted that the local algorithm performs well compared with the global algorithm. The proposed CDMA system shows better performance than the TDMA system in terms of delay and throughput.
收起
摘要 :
MK-0457 inhibits aurora, BCR-ABL and other kinases and may be clinically active in imatinib resistant leukemia. To define mediators of MK-0457 responsiveness, kinase inhibitory profiles were examined in multiple cell models of ima...
展开
MK-0457 inhibits aurora, BCR-ABL and other kinases and may be clinically active in imatinib resistant leukemia. To define mediators of MK-0457 responsiveness, kinase inhibitory profiles were examined in multiple cell models of imatinib sensitive and resistant disease. Aurora and BCR-ABL kinase inhibition were consistently measured at 20-100 nM and 2-10 microM MK-0457, respectively, but expression of T315I-BCR-ABL and overexpression of Lyn kinase reduced MK-0457 sensitivity. Aurora kinase inhibition was associated with cell cycle restriction and p53 induction and p53-null cells were far less responsive to MK-0457, requiring BCR-ABL inhibitory concentrations for apoptotic activity. In wild-type p53 expressing CML cells MK-0457 sensitivity was modulation by alterations in p53 levels through HDM-2 inhibition and gene silencing. MK-0457 suppressed aurora kinase activity and induced apoptosis in imatinib resistant clinical specimens expressing T315I and other BCR-ABL mutations without effecting BCR-ABL kinase activity. Together, these results suggest that MK-0457 apoptotic activity in CML cells is primarily associated with aurora kinase inhibition but can be altered by multiple molecular changes associated with disease progression or acquisition of imatinib resistance.
收起
摘要 :
Microtubule end-binding protein 1 (EB1) is an evolutionarily conserved protein that regulates microtubule dynamics and participates in diverse cell activities. Here, we demonstrate that EB1 expression is up-regulated in human brea...
展开
Microtubule end-binding protein 1 (EB1) is an evolutionarily conserved protein that regulates microtubule dynamics and participates in diverse cell activities. Here, we demonstrate that EB1 expression is up-regulated in human breast cancer specimens and cell lines. The level of EB1 correlates with clinicopathological parameters indicating the malignancy of breast cancer, including higher histological grade, higher pathological tumour node metastasis (pTNM) stage, and higher incidence of lymph node metastasis. Knockdown of EB1 expression remarkably inhibits cancer cell proliferation, and conversely, elevation of its expression promotes cell proliferation. Our data further show that EB1 promotes colony formation and enhances tumour growth in nude mice. In addition, EB1 stimulates Aurora-B activity in breast cancer cells, and EB1 expression correlates with increased Aurora-B activity in clinical samples of breast cancer. These findings thus suggest an oncogenic role for EB1 in breast cancer.
收起