摘要 :
There is an ever-increasing yet unmet market demand for high-performance biosensors that can reliably interface with the biological entities under test and accurately interpret the icroscopic biochemical processes by readily measu...
展开
There is an ever-increasing yet unmet market demand for high-performance biosensors that can reliably interface with the biological entities under test and accurately interpret the icroscopic biochemical processes by readily measureable signals. These sensors will provide adical solutions to future medical diagnosis applications. Such sensors need to provide high sensitivity, large dynamic range, and handheld portability all within a low price tag to be qualified as functionally and economically viable products. Once fully developed, they can serve as a portable molecularlevel medical diagnostic platform to address applications such as low-cost home health care, epidemic disease control, biothreat detection, and environmental monitoring [1], [2]. In parallel, complementary metal?oxide?semiconductor (CMOS), as one of the most mature integrated circuit (IC) processes, has gained increased attention among the biosensors and bioelectronics community. The modern CMOS process provides high-performance signal receiving and generation, unparalleled on-chip computation, and low cost at a mass-production level. As a result, CMOS ICs naturally offer a powerful, versatile, and costcompetitive platform for implementing integrated biosensors.
收起
摘要 :
This paper reviews the current state of loudspeaker-based spatial sound reproduction methods from technical perspective as well as perceptual perspective. A nomenclature is developed that allows for a strict separation between the...
展开
This paper reviews the current state of loudspeaker-based spatial sound reproduction methods from technical perspective as well as perceptual perspective. A nomenclature is developed that allows for a strict separation between these two perspectives. The physical fundamentals, practical realization, and results from perceptual studies are discussed for a number of well-established and emerging reproduction techniques. Further, the paper outlines novel approaches to spatial sound evaluation in terms of perceived quality and provides a comparison of current approaches.
收起
摘要 :
In the atomic force microscope (AFM) scanning system, the piezoscanner is significant in realizing high-performance tasks. To cater to this demand, a novel compliant two-degrees-of-freedom (2-DOF) micro-/nanopositioning stage with...
展开
In the atomic force microscope (AFM) scanning system, the piezoscanner is significant in realizing high-performance tasks. To cater to this demand, a novel compliant two-degrees-of-freedom (2-DOF) micro-/nanopositioning stage with modified lever displacement amplifiers is proposed in this paper, which can be selected to work in dual modes. Moreover, the modified double four-bar P (P denotes prismatic) joints are adopted in designing the flexible limbs. The established models for the mechanical performance evaluation in terms of kinetostatics, dynamics, and workspace are validated by finite-element analysis. After a series of dimension optimizations carried out via particle swarm optimization algorithm, a novel active disturbance rejection controller, including the components of nonlinearity tracking differentiator, extended state observer, and nonlinear state error feedback, is designed for automatically estimating and suppressing the plant uncertainties arising from the hysteresis nonlinearity, creep effect, sensor noises, and other unknown disturbances. The closed-loop control results based on simulation and prototype indicate that the two working natural frequencies of the proposed stage are approximated to be 805.19 and 811.31 Hz, the amplification ratio in two axes is about 4.2, and the workspace is around $120 times 120 muhbox{m}^{2}$, while the cross-coupling between the two axes is kept within 2%. All of the results indicate that the developed micro-/nanopositioning system has a good property for high-performance AFM scanning.
收起
摘要 :
In recent years, a number of feature extraction procedures for automatic speech recognition (ASR) systems have been based on models of human auditory processing, and one often hears arguments in favor of implementing knowledge of ...
展开
In recent years, a number of feature extraction procedures for automatic speech recognition (ASR) systems have been based on models of human auditory processing, and one often hears arguments in favor of implementing knowledge of human auditory perception and cognition into machines for ASR. This paper takes a reverse route, and argues that the engineering techniques for automatic recognition of speech that are already in widespread use are often consistent with some well-known properties of the human auditory system.
收起
摘要 :
Ambient intelligence is a new information paradigm, where people are empowered through a digital environment that is “aware” of their presence and context and is sensitive, adaptive, and responsive to their needs. Hence, one of ...
展开
Ambient intelligence is a new information paradigm, where people are empowered through a digital environment that is “aware” of their presence and context and is sensitive, adaptive, and responsive to their needs. Hence, one of the important requirements for ambient intelligent environments (AIEs) is the ability to localize the whereabouts of the user in the AIE to address her/his needs. In order to protect user privacy, the use of cameras is not desirable in AIEs, and hence, there is a need to rely on nonintrusive sensors. There are various localization means that are available for outdoor spaces such as those which rely on satellite signals triangulation. However, these outdoor localization means cannot be used in indoor environments. The majority of nonintrusive and noncamera-based indoor localization systems require the installation of extra hardware such as ultrasound emitters/antennas, radio-frequency identification (RFID) antennas, etc. In this paper, we propose a novel indoor localization system that is based on WiFi signals which are free to receive, and they are available in abundance in the majority of domestic spaces. However, free WiFi signals are noisy and uncertain, and their strengths and availability are continuously changing. Hence, we present a fuzzy logic-based system which employs free available WiFi signals to localize a given user in AIEs. The proposed system receives WiFi signals from a large number of existing WiFi access points (up to 170 access points), where no prior knowledge of the access points locations and the environment is required. The system employs an incremental lifelong learning approach to adjust its behavior to the varying and changing WiFi signals to provide a zero-cost localization system which can provide high accuracy in real-world living spaces. We have compared our system in both simulated and real environments with other relevant techniques in the literature, and we have found that our system outperfo- ms the other systems in the offline learning process, whereas our system was the only system which is capable of performing online learning and adaptation. The proposed system was tested in real-world spaces from a living lab intelligent apartment (iSpace) to a town center apartment to a block of offices. In all these experiments, our system has been highly accurate in detecting the user in the given AIEs, and the system was able to adapt its behavior to changes in the AIE or the WiFi signals. We envisage that the proposed system will play an important role in AIEs, especially for privacy concerned situations like elderly care scenarios.
收起
摘要 :
This paper studies the precoder design of bidirectional networks in which each node is equipped with multiple antennas. In contrast to the conventional model of bidirectional relay networks, this paper considers a more general sce...
展开
This paper studies the precoder design of bidirectional networks in which each node is equipped with multiple antennas. In contrast to the conventional model of bidirectional relay networks, this paper considers a more general scenario, i.e., a multi-user multi-relay network. First, by assuming that perfect channel state information (CSI) is available, we investigate the precoding design for the relays and users to minimize the sum mean squared error (MSE) and the maximum of single user's MSE, respectively. Then, we consider a more practical scenario where CSI estimation error is taken into account. By means of alternating optimization approach, we decompose the main problem into several decoupled subproblems with tractable solutions. It is shown that, in both the perfect and imperfect CSI cases, the proposed precoding algorithms outperform the existing solutions in terms of MSE and bit-error-rate (BER) performance.
收起
摘要 :
In this paper, the modeling of steer-by-wire (SbW) systems is further studied, and a sliding mode control scheme for the SbW systems with uncertain dynamics is developed. It is shown that an SbW system, from the steering motor to ...
展开
In this paper, the modeling of steer-by-wire (SbW) systems is further studied, and a sliding mode control scheme for the SbW systems with uncertain dynamics is developed. It is shown that an SbW system, from the steering motor to the steered front wheels, is equivalent to a second-order system. A sliding mode controller can then be designed based on the bound information of uncertain system parameters, uncertain self-aligning torque, and uncertain torque pulsation disturbances, in the sense that not only the strong robustness with respect to large and nonlinear system uncertainties can be obtained but also the front-wheel steering angle can converge to the handwheel reference angle asymptotically. Both the simulation and experimental results are presented in support of the excellent performance and effectiveness of the proposed scheme.
收起
摘要 :
X-ray computed tomography (CT) imaging of patients with metallic implants usually suffers from streaking metal artifacts. In this paper, we propose a new projection completion metal artifact reduction (MAR) algorithm by formulatin...
展开
X-ray computed tomography (CT) imaging of patients with metallic implants usually suffers from streaking metal artifacts. In this paper, we propose a new projection completion metal artifact reduction (MAR) algorithm by formulating the completion of missing projections as a regularized inverse problem in the wavelet domain. The Douglas–Rachford splitting (DRS) algorithm was used to iteratively solve the problem. Two types of prior information were exploited in the algorithm: 1) the sparsity of the wavelet coefficients of CT sinograms in a dictionary of translation-invariant wavelets and 2) the detail wavelet coefficients of a prior sinogram obtained from the forward projection of a segmented CT image. A pseudo-$L_{0}$ synthesis prior was utilized to exploit and promote the sparsity of wavelet coefficients. The proposed $L_{0}$-DRS MAR algorithm was compared with standard linear interpolation and the normalized metal artifact reduction (NMAR) approach proposed by Meyer using both simulated and clinical studies including hip prostheses, dental fillings, spine fixation and electroencephalogram electrodes in brain imaging. The qualitative and quantitative evaluations showed that our algorithm substantially suppresses streaking artifacts and can outperform both linear interpolation and NMAR algorithms.
收起
摘要 :
This paper considers the problem of filter design with secrecy constraints, where two legitimate parties (Alice and Bob) communicate in the presence of an eavesdropper (Eve) over a Gaussian multiple-input-multiple-output (MIMO) wi...
展开
This paper considers the problem of filter design with secrecy constraints, where two legitimate parties (Alice and Bob) communicate in the presence of an eavesdropper (Eve) over a Gaussian multiple-input-multiple-output (MIMO) wiretap channel. This problem involves designing, subject to a power constraint, the transmit and the receive filters which minimize the mean-squared error (MSE) between the legitimate parties whilst assuring that the eavesdropper MSE remains above a certain threshold. We consider a general MIMO Gaussian wiretap scenario, where the legitimate receiver uses a linear zero-forcing (ZF) filter and the eavesdropper receiver uses either a ZF or an optimal linear Wiener filter. We provide a characterization of the optimal filter designs by demonstrating the convexity of the optimization problems. We also provide generalizations of the filter designs from the scenario where the channel state is known to all the parties to the scenario where there is uncertainty in the channel state. A set of numerical results illustrates the performance of the novel filter designs, including the robustness to channel modeling errors. In particular, we assess the efficacy of the designs in guaranteeing not only a certain MSE level at the eavesdropper, but also in limiting the error probability at the eavesdropper. We also assess the impact of the filter designs on the achievable secrecy rates. The penalty induced by the fact that the eavesdropper may use the optimal nonlinear receive filter rather than the optimal linear one is also explored in the paper.
收起
摘要 :
In this paper, an adaptive fuzzy control scheme is proposed for hybrid motion/force of trilateral teleoperation systems with a dual-master–single-slave configuration under stochastic time-varying delays in communication channels....
展开
In this paper, an adaptive fuzzy control scheme is proposed for hybrid motion/force of trilateral teleoperation systems with a dual-master–single-slave configuration under stochastic time-varying delays in communication channels. Different from previous works on bilateral teleoperation systems, this paper addresses dual-master trilateral control of a single holonomic-constrained robotic manipulator, where the communication delays are modeled as multiple Markov chains, and the motion/force controls are investigated under consideration of unsymmetric stochastic time-varying delays and system dynamical uncertainties. Using partial feedback linearization, the whole trilateral teleoperation system, which consists of both master and slave manipulator dynamics, is transformed into three subsystems. By integrating Markov jump systems to handle random delays, adaptive fuzzy control strategies are developed for the nonlinear teleoperators with modeling uncertainties and external disturbances by using the approximation property of the fuzzy logic systems (FLSs). It is proven that the trilateral teleoperation system is stochastically stable in mean square under specific linear matrix inequality (LMI) conditions, and all the signals of the resulting closed-loop system are uniformly bounded. The proposed scheme is validated by extensive simulations.
收起