摘要 :
This paper examines a novel approach for temporal calibration of a three-dimensional (3-D) freehand ultrasound system. A localization system fixed on the probe gives the position and orientation of the probe. For quantitative use,...
展开
This paper examines a novel approach for temporal calibration of a three-dimensional (3-D) freehand ultrasound system. A localization system fixed on the probe gives the position and orientation of the probe. For quantitative use, calibration is needed to correctly localize a$B$-scan in four-dimensional (4-D) (3-D+t) space. Temporal latency estimation is defined in a general robust formulation using no specific probe motion constraints. Experiments were performed on synthetic and real data using a 3-D freehand ultrasound system. The achieved precision is lower than the image acquisition rate (40 ms). A validation study using a calibration phantom has been performed to evaluate the influence of incorrect latency estimation on the 3-D reconstruction procedure. We showed that for latency estimation errors less than 40 ms, the 3-D reconstruction errors are negligible for volume estimation.
收起
摘要 :
Two-dimensional ultrasound (US) imaging has been successfully used in clinical applications as a low-cost, portable and non-invasive image modality for more than three decades. Recent advances in computer science and technology il...
展开
Two-dimensional ultrasound (US) imaging has been successfully used in clinical applications as a low-cost, portable and non-invasive image modality for more than three decades. Recent advances in computer science and technology illustrate the promise of the 3-D US modality as a medical imaging technique that is comparable to other prevalent modalities and that overcomes certain drawbacks of 2-D US. This systematic review covers freehand 3-D US imaging between 1970 and 2017, highlighting the current trends in research fields, the research methods, the main limitations, the leading researchers, standard assessment criteria and clinical applications. Freehand 3-D US systems are more prevalent in the academic environment, whereas in clinical applications and industrial research, most studies have focused on 3-D US transducers and improvement of hardware performance. This topic is still an interesting active area for researchers, and there remain many unsolved problems to be addressed. (C) 2017 World Federation for Ultrasound in Medicine & Biology.
收起
摘要 :
In this paper, three different calibration methods for three-dimensional (3-D) freehand ultrasound (US) are evaluated. Calibration is the process of estimating the rigid transformation from US image coordinates to the coordinate s...
展开
In this paper, three different calibration methods for three-dimensional (3-D) freehand ultrasound (US) are evaluated. Calibration is the process of estimating the rigid transformation from US image coordinates to the coordinate system of the tracking sensor mounted onto the probe. Calibration accuracy has an important impact on quantitative studies. Geometrical precision can also be crucial in many interventions and surgery. The proposed evaluation framework relies on a single point phantom and a 3-D US phantom which mimics the US characteristics of human liver. Four quality measures are used: 3-D point localization criterion, distance and volume measurements, and shape based criterion. Results show that during the acquisition procedure, volumetric measurements and shapes of the reconstructed object depend on probe motion used, particularly fan motions for which errors are larger. It is also shown that accurate calibration is essential to obtain reliable quantitative information
收起
摘要 :
Three-dimensional (3D) ultrasound is an invaluable tool in the detection and evaluation of many uterine anomalies and improves upon the traditional approach of two-dimensional (2D) ultrasonography. We aim to describe an easy way o...
展开
Three-dimensional (3D) ultrasound is an invaluable tool in the detection and evaluation of many uterine anomalies and improves upon the traditional approach of two-dimensional (2D) ultrasonography. We aim to describe an easy way of assessing the uterine coronal plane using the basic three-dimensional ultrasound in everyday gynecological practice.
收起
摘要 :
? 2024 World Federation for Ultrasound in Medicine & BiologyObjectives: Freehand three-dimensional (3D) ultrasound (US) is of great significance for clinical diagnosis and treatment, it is often achieved with the aid of external devices (optical and/or electromagnetic, etc.) that monitor the location and orientation of the US probe. However, this external monitoring is often impacted by imaging environment such as optical occlusions and/or electromagnetic (EM) interference. Methods: To address the above issues, we integrated a binocular camera and an inertial measurement unit (IMU) on a US probe. Subsequently, we built a tight coupling model utilizing the unscented Kalman algorithm based on Lie groups (UKF-LG), combining vision and inertial information to infer the probe's movement, through which the position and orientation of the US image frame are calculated. Finally, the volume data was reconstructed with the voxel-based hole-filling method. Results: The experiments including calibration experiments, tracking performance evaluation, phantom scans, and real scenarios scans have been conducted. The results show that the proposed system achieved the accumulated frame position error of 3.78 mm and the orientation error of 0.36° and reconstructed 3D US images with high quality in both phantom and real scenarios. Conclusions: The proposed method has been demonstrated to enhance the robustness and effectiveness of freehand 3D US. Follow-up research will focus on improving the accuracy and stability of multi-sensor fusion to make the system more practical in clinical environments....
展开
? 2024 World Federation for Ultrasound in Medicine & BiologyObjectives: Freehand three-dimensional (3D) ultrasound (US) is of great significance for clinical diagnosis and treatment, it is often achieved with the aid of external devices (optical and/or electromagnetic, etc.) that monitor the location and orientation of the US probe. However, this external monitoring is often impacted by imaging environment such as optical occlusions and/or electromagnetic (EM) interference. Methods: To address the above issues, we integrated a binocular camera and an inertial measurement unit (IMU) on a US probe. Subsequently, we built a tight coupling model utilizing the unscented Kalman algorithm based on Lie groups (UKF-LG), combining vision and inertial information to infer the probe's movement, through which the position and orientation of the US image frame are calculated. Finally, the volume data was reconstructed with the voxel-based hole-filling method. Results: The experiments including calibration experiments, tracking performance evaluation, phantom scans, and real scenarios scans have been conducted. The results show that the proposed system achieved the accumulated frame position error of 3.78 mm and the orientation error of 0.36° and reconstructed 3D US images with high quality in both phantom and real scenarios. Conclusions: The proposed method has been demonstrated to enhance the robustness and effectiveness of freehand 3D US. Follow-up research will focus on improving the accuracy and stability of multi-sensor fusion to make the system more practical in clinical environments.
收起
摘要 :
Abstract Purpose Intra-operative assessment of resection margins during oncological surgery is a field that needs improvement. Ultrasound (US) shows the potential to fulfill this need, but this imaging technique is highly operator...
展开
Abstract Purpose Intra-operative assessment of resection margins during oncological surgery is a field that needs improvement. Ultrasound (US) shows the potential to fulfill this need, but this imaging technique is highly operator-dependent. A 3D US image of the whole specimen may remedy the operator dependence. This study aims to compare and evaluate the image quality of 3D US between freehand acquisition (FA) and motorized acquisition (MA).Methods Multiple 3D US volumes of a commercial phantom were acquired in motorized and freehand fashion. FA images were collected with electromagnetic navigation. An integrated algorithm reconstructed the FA images. MA images were stacked into a 3D volume. The image quality is evaluated following the metrics: contrast resolution, axial and elevation resolution, axial and elevation distance calibration, stability, inter-operator variability, and intra-operator variability. A linear mixed model determined statistical differences between FA and MA for these metrics.Results The MA results in a statistically significant lower error of axial distance calibration (p?0.0001) and higher stability (p?0.0001) than FA. On the other hand, the FA has a better elevation resolution (p?0.003) than the MA.Conclusion MA results in better image quality of 3D US than the FA method based on axial distance calibration, stability, and variability. This study suggests acquiring 3D US volumes for intra-operative ex vivo margin assessment in a motorized fashion.
收起
摘要 :
Among tracking techniques applied in the 3-D freehand ultrasound (US), the camera-based tracking method is relatively mature and reliable. However, constrained by manufactured marker rigid bodies, the US probe is usually limited t...
展开
Among tracking techniques applied in the 3-D freehand ultrasound (US), the camera-based tracking method is relatively mature and reliable. However, constrained by manufactured marker rigid bodies, the US probe is usually limited to operate within a narrow rotational range before occlusion issues affect accurate and robust tracking performance. Thus, this study proposed a hemispherical marker rigid body to hold passive noncoplanar markers so that the markers could be identified by the camera, mitigating self-occlusion. The enlarged rotational range provides greater freedom for sonographers while performing examinations. The single-axis rotational and translational tracking performances of the system, equipped with the newly designed marker rigid body, were investigated and evaluated. Tracking with the designed marker rigid body achieved high tracking accuracy with 0.57 degrees for the single-axis rotation and 0.01 mm for the single-axis translation for sensor distance between 1.5 and 2 m. In addition to maintaining high accuracy, the system also possessed an enhanced ability to capture over 99.76% of the motion data in the experiments. The results demonstrated that with the designed marker rigid body, the missing data were remarkably reduced from over 15% to less than 0.5%, which enables interpolation in the data postprocessing. An imaging test was further conducted, and the volume reconstruction of a four-month fetal phantom was demonstrated using the motion data obtained from the tracking system.
收起
摘要 :
Ultrasound imaging has been extensively used for determining the severity of carotid atherosclerotic stenosis. In particular, the morphological characterization of carotid plaques can be performed for risk stratification of patien...
展开
Ultrasound imaging has been extensively used for determining the severity of carotid atherosclerotic stenosis. In particular, the morphological characterization of carotid plaques can be performed for risk stratification of patients. However, using 2D ultrasound imaging for detecting morphological changes in plaques has several limitations. Due to the scan was performed on a single longitudinal cross-section, the selected 2D image is difficult to represent the entire morphology and volume of plaque and vessel lumen. In addition, the precise positions of 2D ultrasound images highly depend on the radiologists' experience, it makes the serial long-term exams of anti-atherosclerotic therapies are difficult to relocate the same corresponding planes by using 2D B-mode images. This has led to the recent development of three-dimensional (3D) ultrasound imaging, which offers improved visualization and quantification of complex morphologies of carotid plaques. In the present study, a freehand 3D ultrasound imaging technique based on optical motion tracking technology is proposed. Unlike other optical tracking systems, the marker is a small rigid body that is attached to the ultrasound probe and is tracked by eight high-performance digital cameras. The probe positions in 3D space coordinates are then calibrated at spatial and temporal resolutions of 10 gm and 0.01 s, respectively. The image segmentation procedure involves Otsu's and the active contour model algorithms and accurately detects the contours of the carotid arteries. The proposed imaging technique was verified using normal artery and atherosclerotic stenosis phantoms. Human experiments involving freehand scanning of the carotid artery of a volunteer were also performed. The results indicated that compared with manual segmentation, the lowest percentage errors of the proposed segmentation procedure were 7.8% and 9.1% for the external and internal carotid arteries, respectively. Finally, the effect of handshaking was calibrated using the optical tracking system for reconstructing a 3D image. (C) 2016 Elsevier B.V. All rights reserved.
收起
摘要 :
We developed a simplified three-dimensional ultrasonic device that can scan a wide area and performed measurements in the scanned area. The system is more compact than magnetic resonance imaging (MRI) systems and can measure rando...
展开
We developed a simplified three-dimensional ultrasonic device that can scan a wide area and performed measurements in the scanned area. The system is more compact than magnetic resonance imaging (MRI) systems and can measure random cross sections by acquiring volume data over a wide range through freehand scanning with a magnetic sensor unit that detects the transducer position. The system was applied successfully to a case with a huge myoma. Our system, in ways similar to computed tomography or MRI systems, can support both the objective understanding of the pathology of huge tumors and follow-up determinations of tumor diameters at arbitrary cross sections in the volume data.
收起
摘要 :
Background: Whether infants use suction or peristaltic tongue movements or a combination to extract milk during breast-feeding is controversial. The aims of this pilot study were 1] to evaluate the feasibility of using 3D ultrasou...
展开
Background: Whether infants use suction or peristaltic tongue movements or a combination to extract milk during breast-feeding is controversial. The aims of this pilot study were 1] to evaluate the feasibility of using 3D ultrasound scanning to visualise infant tongue movements; and 2] to ascertain whether peristaltic tongue movements could be demonstrated during breast-feeding. Methods: 15 healthy term infants, aged 2. weeks to 4. months were scanned during breast-feeding, using a real-time 3D ultrasound system, with a 7. MHz transducer placed sub-mentally. Results: 1] The method proved feasible, with 72% of bi-plane datasets and 56% of real-time 3D datasets providing adequate coverage [>. 75%] of the infant tongue. 2] Peristaltic tongue movement was observed in 13 of 15 infants [83%] from real-time or reformatted truly mid-sagittal views under 3D guidance. Conclusions: This is the first study to demonstrate the feasibility of using 3D ultrasound to visualise infant tongue movements during breast-feeding. Peristaltic infant tongue movement was present in the majority of infants when the image plane was truly mid-sagittal but was not apparent if the image was slightly off the mid-sagittal plane. This should be considered in studies investigating the relative importance of vacuum and peristalsis for milk transfer.
收起