摘要 :
With a growing number of images being used to express opinions in Microblog, text based sentiment analysis is not enough to understand the sentiments of users. To obtain the sentiments implied in Microblog images, we propose a Vis...
展开
With a growing number of images being used to express opinions in Microblog, text based sentiment analysis is not enough to understand the sentiments of users. To obtain the sentiments implied in Microblog images, we propose a Visual Sentiment Topic Model (VSTM) which gathers images in the same Microblog topic to enhance the visual sentiment analysis results. First, we obtain the visual sentiment features by using Visual Sentiment Ontology (VSO); then, we build a Visual Sentiment Topic Model by using all images in the same topic; finally, we choose better visual sentiment features according to the visual sentiment features distribution in a topic. The best advantage of our approach is that the discriminative visual sentiment ontology features are selected according to the sentiment topic model. The experiment results show that the performance of our approach is better than VSO based model.
收起
摘要 :
We propose a new task called sentimental visual captioning that generates captions with the inherent sentiment reflected by the input image or video. Compared with the stylized visual captioning task that requires a predefined sty...
展开
We propose a new task called sentimental visual captioning that generates captions with the inherent sentiment reflected by the input image or video. Compared with the stylized visual captioning task that requires a predefined style independent of the image or video, our new task automatically analyzes the inherent sentiment tendency from the visual content. With this in mind, we propose a multimodal Transformer model namely Senti-Transformer for sentimental visual captioning, which integrates both content and sentiment information from multiple modalities and incorporates prior sentimental knowledge to generate sentimental sentence. Specifically, we extract prior knowledge from sentimental corpus to obtain sentimental textual information and design a multi-head Transformer encoder to encode multimodal features. Then we decompose the attention layer in the middle of Transformer decoder to focus on important features of each modality, and the attended features are integrated through an intra-and inter-modality fusion mechanism for generating sentimental sentences. To effectively train the proposed model using the external sentimental corpus as well as the paired images or videos and factual sentences in existing captioning datasets, we propose a two-stage training strategy that first learns to incorporate sentimental elements into the sentences via a regularization term and then learns to generate fluent and relevant sentences with the inherent sentimental styles via reinforcement learning with a sentimental reward. Extensive experiments on both image and video datasets demonstrate the effectiveness and superiority of our Senti-Transformer on sentimental visual captioning. Source code is available at https:// github.com/ezeli/InSentiCap_ext.
收起
摘要 :
In the field of data visualization, there has been a recent trend of using a complex type of visualization with a multidimensional structure or using several visualizations in parallel when summarizing the results of sentiment ana...
展开
In the field of data visualization, there has been a recent trend of using a complex type of visualization with a multidimensional structure or using several visualizations in parallel when summarizing the results of sentiment analysis. Although this trend may be useful for sophisticated sentiment analysis, such analysis is difficult for the general public and novice researchers. To address this issue, there has recently been a trend of visualizing sentiments using visual metaphors. To facilitate the understanding of related cases, it is necessary to have a systematic means of grasping the sentiment target, the purpose and motivation of research, and the representations used as substitutes for visual metaphors. Therefore, the objective of the present study was to develop an exploration system that can analyze the visual metaphors used in the case of sentiment visualization. For this study, (1) sentiment visualization cases in which visual metaphors are used were collected. (2) After a taxonomy composed of the categories of “target, intermediation, representation, visual variable, and visualization technique” was constructed, it was used to analyze sentences of visual metaphors appearing in sentiment visualization cases. (3) An exploration system capable of grasping the semantic relationships of sub-elements within the five categories of the taxonomy and intuitively interpreting visual metaphors was developed so that appropriate cases can be recommended to sentiment visualization researchers. (4) The approach and usefulness of the exploration system were explained using user scenarios. (5) A case study was conducted to show that the provided system can be analyzed from various perspectives. (6) The usability of the exploration system was demonstrated through a verification targeting experts. The proposed system allows researchers and analysts to intuitively grasp “what types of visual metaphor method and idea should be equipped to visualize sentiment data in an easier way to understand.”.
收起
摘要 :
Social media users are increasingly using both images and text to express their opinions and share their experiences, instead of only using text in the conventional social media. Consequently, the conventional text-based sentiment...
展开
Social media users are increasingly using both images and text to express their opinions and share their experiences, instead of only using text in the conventional social media. Consequently, the conventional text-based sentiment analysis has evolved into more complicated studies of multimodal sentiment analysis. To tackle the challenge of how to effectively exploit the information from both visual content and textual content from image-text posts, this paper proposes a new image-text consistency driven multimodal sentiment analysis approach. The proposed approach explores the correlation between the image and the text, followed by a multimodal adaptive sentiment analysis method. To be more specific, the mid-level visual features extracted by the conventional SentiBank approach are used to represent visual concepts, with the integration of other features, including textual, visual and social features, to develop a machine learning sentiment analysis approach. Extensive experiments are conducted to demonstrate the superior performance of the proposed approach.
收起
摘要 :
Recent years have witnessed a rapid spread of multi-modality microblogs like Twitter and Sina Weibo composed of image, text and emoticon. Visual sentiment prediction of such microblog based social media has recently attracted ever...
展开
Recent years have witnessed a rapid spread of multi-modality microblogs like Twitter and Sina Weibo composed of image, text and emoticon. Visual sentiment prediction of such microblog based social media has recently attracted ever-increasing research focus with broad application prospect. In this paper, we give a systematic review of the recent advances and cutting-edge techniques for visual sentiment analysis. To this end, in this paper we review the most recent works in this topic, in which detailed comparison as well as experimental evaluation are given over the cutting-edge methods. We further reveal and discuss the future trends and potential directions for visual sentiment prediction.
收起
摘要 :
Targeted multimodal sentiment classification (TMSC) aims to identify the sentiment polarity of a target mentioned in a multimodal post. The majority of current studies on this task focus on mapping the image and the text to a high...
展开
Targeted multimodal sentiment classification (TMSC) aims to identify the sentiment polarity of a target mentioned in a multimodal post. The majority of current studies on this task focus on mapping the image and the text to a high-dimensional space in order to obtain and fuse implicit representations, ignoring the rich semantic information contained in the images and not taking into account the contribution of the visual modality in the multimodal fusion representation, which can potentially influence the results of TMSC tasks. This paper proposes a general model for Improving Targeted Multimodal Sentiment Classification with Semantic Description of Images (ITMSC) as a way to tackle these issues and improve the accuracy of multimodal sentiment analysis. Specifically, the ITMSC model can automatically adjust the contribution of images in the fusion representation through the exploitation of semantic descriptions of images and text similarity relations. Further, we propose a target-based attention module to capture the target-text relevance, an image-based attention module to capture the image-text relevance, and a target-image matching module based on the former two modules to properly align the target with the image so that fine-grained semantic information can be extracted. Our experimental results demonstrate that our model achieves comparable performance with several state-of-the-art approaches on two multimodal sentiment datasets. Our findings indicate that incorporating semantic descriptions of images can enhance our understanding of multimodal content and lead to improved sentiment analysis performance.
收起
摘要 :
Targeted multimodal sentiment classification (TMSC) aims to identify the sentiment polarity of a target mentioned in a multimodal post. The majority of current studies on this task focus on mapping the image and the text to a high...
展开
Targeted multimodal sentiment classification (TMSC) aims to identify the sentiment polarity of a target mentioned in a multimodal post. The majority of current studies on this task focus on mapping the image and the text to a high-dimensional space in order to obtain and fuse implicit representations, ignoring the rich semantic information contained in the images and not taking into account the contribution of the visual modality in the multimodal fusion representation, which can potentially influence the results of TMSC tasks. This paper proposes a general model for Improving Targeted Multimodal Sentiment Classification with Semantic Description of Images (ITMSC) as a way to tackle these issues and improve the accuracy of multimodal sentiment analysis. Specifically, the ITMSC model can automatically adjust the contribution of images in the fusion representation through the exploitation of semantic descriptions of images and text similarity relations. Further, we propose a target-based attention module to capture the target-text relevance, an image-based attention module to capture the image-text relevance, and a target-image matching module based on the former two modules to properly align the target with the image so that fine-grained semantic information can be extracted. Our experimental results demonstrate that our model achieves comparable performance with several state-of-the-art approaches on two multimodal sentiment datasets. Our findings indicate that incorporating semantic descriptions of images can enhance our understanding of multimodal content and lead to improved sentiment analysis performance.
收起
摘要 :
Text visualization and visual text analytics methods have been successfully applied for various tasks related to the analysis of individual text documents and large document collections such as summarization of main topics or iden...
展开
Text visualization and visual text analytics methods have been successfully applied for various tasks related to the analysis of individual text documents and large document collections such as summarization of main topics or identification of events in discourse. Visualization of sentiments and emotions detected in textual data has also become an important topic of interest, especially with regard to the data originating from social media. Despite the growing interest in this topic, the research problem related to detecting and visualizing various stances, such as rudeness or uncertainty, has not been adequately addressed by the existing approaches. The challenges associated with this problem include the development of the underlying computational methods and visualization of the corresponding multi-label stance classification results. In this paper, we describe our work on a visual analytics platform, called Stance Vis Prime, which has been designed for the analysis of sentiment and stance in temporal text data from various social media data sources. The use case scenarios intended for StanceVis Prime include social media monitoring and research in sociolinguistics. The design was motivated by the requirements of collaborating domain experts in linguistics as part of a larger research project on stance analysis. Our approach involves consuming documents from several text stream sources and applying sentiment and stance classification, resulting in multiple data series associated with source texts. StanceVis Prime provides the end users with an overview of similarities between the data series based on dynamic time warping analysis, as well as detailed visualizations of data series values. Users can also retrieve and conduct both distant and close reading of the documents corresponding to the data series. We demonstrate our approach with case studies involving political targets of interest and several social media data sources and report preliminary user feedback received from a domain expert.
收起
摘要 :
In the past 10 years, how to visualize human emotions in communication has become an important topic. For providing personalized customer service for enterprises from self-reflection in psychology to opinion mining, emotional visu...
展开
In the past 10 years, how to visualize human emotions in communication has become an important topic. For providing personalized customer service for enterprises from self-reflection in psychology to opinion mining, emotional visualization uses coded emotional computing results to make various basic charts, and some novel visual analysis systems for all-round analysis which intuitively reveal personal views and emotional styles. Emotion visualization uses coded emotion computing results to reflect the emotion analysis tasks, such as self-reflection in psychology or social media opinion mining results. With the help of various basic charts, infographics, and some novel visual analysis systems, it makes all directions' analysis and intuitively reveals personal opinions and emotional styles. At present, emotional visualization has developed to use different platforms or multiple platforms to analyze various complex data, including text, sound, image, video, physiological signal or any mixed data. In this paper, we discuss a total of 75 approaches from four different categories: data source type, emotional computing, visual coding and visualization and visual analysis tasks, and 15 subcategories, including visual works mentioned in published paper and interactive visual works published on the Internet. Then, we discuss the further research approaches of emotional visualization and the prospects of emotional visualization under multidimensional data collaboration. We expect that this survey can help researchers interested in emotional visualization of varied data to find a more suitable visualization method for their data and projects.
收起
摘要 :
The automatic detection and classification of stance (e.g., certainty or agreement) in text data using natural language processing and machine-learning methods creates an opportunity to gain insight into the speakers' attitudes to...
展开
The automatic detection and classification of stance (e.g., certainty or agreement) in text data using natural language processing and machine-learning methods creates an opportunity to gain insight into the speakers' attitudes toward their own and other people's utterances. However, identifying stance in text presents many challenges related to training data collection and classifier training. To facilitate the entire process of training a stance classifier, we propose a visual analytics approach, called ALVA, for text data annotation and visualization. ALVA's interplay with the stance classifier follows an active learning strategy to select suitable candidate utterances for manual annotaion. Our approach supports annotation process management and provides the annotators with a clean user interface for labeling utterances with multiple stance categories. ALVA also contains a visualization method to help analysts of the annotation and training process gain a better understanding of the categories used by the annotators. The visualization uses a novel visual representation, called CatCombos, which groups individual annotation items by the combination of stance categories. Additionally, our system makes a visualization of a vector space model available that is itself based on utterances. ALVA is already being used by our domain experts in linguistics and computational linguistics to improve the understanding of stance phenomena and to build a stance classifier for applications such as social media monitoring.
收起