摘要 :
In this study the role of different metal centers (magnesium, zinc and copper) on the enhancement of the hydrophilic character of metallochlorophylls, was evaluated. The solvatochromism as well as the aggregation process for these...
展开
In this study the role of different metal centers (magnesium, zinc and copper) on the enhancement of the hydrophilic character of metallochlorophylls, was evaluated. The solvatochromism as well as the aggregation process for these compounds in water/ethanol mixtures at different volume ratios were evaluated using Fluorescence, and Resonant Light Scattering (RLS) measurements, aiming to characterize the behavior of these compounds. Independently on the studied metallochlorophyll, the presence of at least 60% of water results in a considerable increase in the fluorescence emission, probably a direct consequence of a lower aggregation of these compounds, which is confirmed by the results from RLS measurements. Additionally, the results suggest that magnesium and zinc chlorophyll should be promising phototherapeutic agents for Photodynamic Therapy.
收起
摘要 :
In this study, we evaluate the factors which determine the reactivity of divalent metal ions in the spontaneous formation of metallochlorophylls, using experimental and computational approaches. Kinetic studies were carried out us...
展开
In this study, we evaluate the factors which determine the reactivity of divalent metal ions in the spontaneous formation of metallochlorophylls, using experimental and computational approaches. Kinetic studies were carried out using pheophytin a in reactions with various divalent metal ions combined with non- or weakly-coordinative counter ions in a series of organic solvents. To obtain detailed insights into the solvent effect, the metalations with the whole set of cations were investigated in three solvents and with Zn2+ in seven solvents. The reactions were monitored using electronic absorption spectroscopy and the stopped-flow technique. DFT calculations were employed to shed light on the role of solvent in activating the metal ions towards porphyrinoids. This experimental and computational analysis gives detailed information regarding how the solvent and the counter ion assist/hinder the metalation reaction as activators/inhibitors. The metalation course is dictated to a large extent by the reaction medium, via either the activation or deactivation of the incoming metal ion. The solvent may affect the metalation in several ways, mainly via H-bonding with pyrrolenine nitrogens and the activation/deactivation of the incoming cation. It also seems to affect the activation enthalpy by causing slight conformational changes in the macrocyclic ligand. These new mechanistic insights contribute to a better understanding of the "metal-counterion-solvent" interplay in the metalation of porphyrinoids. In addition, they are highly relevant to the mechanisms of metalation reactions catalyzed by chelatases and explain the differences between the insertion of Mg2+ and other divalent cations.
收起
摘要 :
In the Ni-substituted chlorophylls, an ultrafast (< 60 fs) deactivation channel is created, which is not present in Ni-porphyrins. This observation prompted us to investigate in detail the mechanism of excitation-to-heat conversio...
展开
In the Ni-substituted chlorophylls, an ultrafast (< 60 fs) deactivation channel is created, which is not present in Ni-porphyrins. This observation prompted us to investigate in detail the mechanism of excitation-to-heat conversion in Ni-substituted chlorophylls, experimentally, using time-resolved laser-induced optoacoustic spectroscopy, and theoretically, using group theory approach. The Ni-substituted chlorophylls show exceptional photostability and the optoacoustic measurements confirm the prompt and very efficient (100%) excitation-into-heat conversion in these complexes. Considering their excellent spectral properties and the loss-free excitation-into-heat conversion they are likely to become a new class of versatile photocalorimetric references. The curious features of the Ni-substituted chlorophylls originate from the symmetry of a ligand field created in the central cavity. The central NNi2+ bonds, formed via the donation of two electrons from each of the sp2 orbitals of two central nitrogens to an empty s-dx2-y2 hybrid centered on Ni2 +, have a considerable covalent character. The extreme rate of excited state relaxation is then not due to a ladder of the metal centered d-states, often invoked in metalloporphyrins, but seems to result from a peculiar topology of the potential energy surface (a saddle-shaped crossing) due to the covalent character of the NNi2+ bonds. This is confirmed by a strong 0 → 0 character of electronic transitions in these complexes indicating a similarity of their equilibrium geometries in the ground (S0) and the excited states (both QX and QY). The excitation energy is very efficiently converted into molecular vibrations and dissipated as heat, involving the central Ni2 +. These Ni-substituted pigments pose a fine exemplification of symmetry control over properties of excited states of transition metal complexes.
收起
摘要 :
Chlorophylls, owing to their adjustable pi-electron system and intense, well-separated electronic transitions, can serve as convenient intrinsic spectroscopic probes of ligand-metal center interactions. They are also interesting f...
展开
Chlorophylls, owing to their adjustable pi-electron system and intense, well-separated electronic transitions, can serve as convenient intrinsic spectroscopic probes of ligand-metal center interactions. They are also interesting for their photosensitizing properties. In order to examine the heavy-atom effects on the chlorophyll triplet state, a key intermediate in chlorophyll-photosensitized reactions, the synthesis of a novel Pt(II)-substituted chlorophyll a was carried out, and the effects of the substitution on steady-state and transient photophysical properties of chlorophyll were studied by absorption and fluorescence spectroscopies, and by laser flash photolysis. The presence of highly electronegative platinum as the central ion increases the energies of the chlorophyll main absorption transitions. As laser flash photolysis experiments show, in air-equilibrated solutions, chlorophyll triplets are efficiently quenched by molecular oxygen. Interestingly, this quenching by oxygen is more effective with metal-containing pigments, in spite of the increased spin-orbit coupling, introduced with the central metals. This points to occurrence of nonspecific interactions of molecular oxygen with metallochlorophylls. The differences in the effects exerted on the pigment triplet by the central metal become distinct after the removal of oxygen. The lifetime of a Pt-chlorophyll triplet remains very short, in the range of only a few microseconds, unlike in the free-base and Mg- and Zn-substituted chlorophylls. Such drastic shortening of the triplet lifetime can be attributed to a large heavy-atom effect, implying that strong interactions must occur between the central Pt(II) ion and the chlorophyll macrocycle, which lead to a more efficient spin-orbit coupling in Pt-chlorophyll than in Pt-porphyrins.
收起