摘要 :
The genetic stability of living cells is continuously threatened by the presence of endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of DNA single-strand breaks that arise in...
展开
The genetic stability of living cells is continuously threatened by the presence of endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of DNA single-strand breaks that arise in each cell, each day, both directly from disintegration of damaged sugars and indirectly from the excision repair of damaged bases. If un-repaired, single-strand breaks can be converted into double-strand breaks during DNA replication, potentially resulting in chromosomal rearrangement and genetic deletion. Consequently, cells have adopted multiple pathways to ensure the rapid and efficient removal of single-strand breaks. A general feature of these pathways appears to be the extensive employment of protein-protein interactions to stimulate both the individual component steps and the overall repair reaction. Our current understanding of DNA single-strand break repair is discussed, and testable models for the architectural coordination of this important process are presented. Copyright 2001 John Wiley & Sons, Inc.
收起
摘要 :
The first half of the 20th century has seen an enormous growth in our knowledge of DNA repair, in no small part due to the work of Dirk Bootsma, Philip Hanawalt and Bryn Bridges; those honored by this issue. For the new millennium...
展开
The first half of the 20th century has seen an enormous growth in our knowledge of DNA repair, in no small part due to the work of Dirk Bootsma, Philip Hanawalt and Bryn Bridges; those honored by this issue. For the new millennium, we have asked three general questions: (A) Do we know all possible strategies of nucleotide excision repair (NER) in all organisms? (B) How is NER integrated and regulated in cells and tissues? (C) Does DNA replication represent a new frontier in the roles of DNA repair? We make some suggestions for the kinds of answers the next generation may provide. The kingdom of archea represents an untapped field for investigation of DNA repair in organisms with extreme lifestyles. NER appears to involve a similar strategy to the other kingdoms of prokaryotes and eukaryotes, but subtle differences suggest that individual components of the system may differ. NER appears to be regulated by several major factors, especially p53 and Rb which interact with transcription coupled repair and global genomic repair, respectively. Examples can be found of major regulatory changes in repair in testicular tissue and melanoma cells. Our understanding of replication of damaged DNA has undergone a revolution in recent years, with the discovery of multiple low-fidelity DNA polymerases that facilitate replicative bypass. A secondary mechanism of replication in the absence of NER or of one or more of these polymerases involves sister chromatid exchange and recombination (hMre11/hRad50/Nbs1). The relative importance of bypass and recombination is determined by the action of p53. We hypothesise that these polymerases may be involved in resolution of complex DNA structures during completion of replication and sister chromatid resolution. With these fascinating problems to investigate, the field of DNA repair will surely not disappoint the next generation.
收起
摘要 :
UvrB, the ultimate damage-recognizing component of bacterial nucleotide excision repair, contains a flexible beta-hairpin rich in hydrophobic residues. We describe the properties of UvrB mutants in which these residues have been m...
展开
UvrB, the ultimate damage-recognizing component of bacterial nucleotide excision repair, contains a flexible beta-hairpin rich in hydrophobic residues. We describe the properties of UvrB mutants in which these residues have been mutated. The results show that Y101 and F108 in the tip of the hairpin are important for the strand-separating activity of UvrB, supporting the model that the beta-hairpin inserts between the two DNA strands during the search for DNA damage. Residues Y95 and Y96 at the base of the hairpin have a direct role in damage recognition and are positioned close to the damage in the UvrB-DNA complex. Strikingly, substituting Y92 and Y93 results in a protein that is lethal to the cell. The mutant protein forms pre- incision complexes on non-damaged DNA, indicating that Y92 and Y93 function in damage recognition by preventing UvrB binding to non-damaged sites. We propose a model for damage recognition by UvrB in which, stabilized by the four tyrosines at the base of the hairpin, the damaged nucleotide is flipped out of the DNA helix.
收起
摘要 :
A linearized plasmid DNA, in which tandem repeats of 400bp flank the breakpoints, was transfected into vertebrate cells, and breakpoint junctions of plasmid DNA circularized in the cells were analyzed to assess the repair activiti...
展开
A linearized plasmid DNA, in which tandem repeats of 400bp flank the breakpoints, was transfected into vertebrate cells, and breakpoint junctions of plasmid DNA circularized in the cells were analyzed to assess the repair activities against DNA double-strand break (DSB) by non-homologous end joining and homology-directed repair (i.e., homologous recombinational repair and single-strand annealing). The circularization by non-homologous end joining repair of the breakpoints depended on the expression of DNA-PKcs, while that by homology-directed repair through the repeats depended on the length of the repeats, indicating that these two DSB repair activities can be rapidly assessed by this assay. Predominance in circularization by either non-homologous end joining or homology-directed repair differed among cells examined, and circularization was exclusively undertaken by homology-directed repair in DT40 cells known to show a high homologous recombination rate against gene-targeting vectors. Thus, this assay will be helpful in studies on mechanisms and inter-cellular variations of DSB repair.
收起
摘要 :
An in vitro system based upon extracts of Escherichia coli infected with bacteriophage T7 was used to monitor repair of double-strand breaks in the T7 genome. The efficiency of double-strand break repair was markedly increased by ...
展开
An in vitro system based upon extracts of Escherichia coli infected with bacteriophage T7 was used to monitor repair of double-strand breaks in the T7 genome. The efficiency of double-strand break repair was markedly increased by DNA molecules ('donor' DNA) consisting of a 2.1 kb DNA fragment, generated by PCR, that had ends extending approximately 1 kb on either side of the break site. Repair proceeded with greater than 10% efficiency even when T7 DNA replication was inhibited. When the donor DNA molecules were labelled with 32P, repaired genomes incorporated label only near the site of the double-strand break. When repair was carried out with unlabelled donor DNA and [32P]-dCTP provided as precursor for DNA synthesis the small amount of incorporated label was distributed randomly throughout the entire T7 genome. Repair was performed using donor DNA that had adjacent BamHI and PstI sites. When the BamHI site was methylated and the PstI site was left unmethylated, the repaired genomes were sensitive to PstI but not to BamHI endonuclease, showing that the methyl groups at the BamHI recognition site had not been replaced by new DNA synthesis during repair of the double-strand break. These observations are most consistent with a model for double-strand break repair in which the break is widened to a small gap, which is subsequently repaired by physical incorporation of a patch of donor DNA into the gap.
收起
摘要 :
Despite nearly universal conservation through evolution, the precise function of the DinB/pol kappa branch of the Y-family of DNA polymerases has remained unclear. Recent results suggest that DinB orthologs from all domains of lif...
展开
Despite nearly universal conservation through evolution, the precise function of the DinB/pol kappa branch of the Y-family of DNA polymerases has remained unclear. Recent results suggest that DinB orthologs from all domains of life proficiently bypass replication blocking lesions that may be recalcitrant to DNA repair mechanisms. Like other translesion DNA polymerases, the error frequency of DinB and its orthologs is higher than the DNA polymerases that replicate the majority of the genome. However, recent results suggest that some Y-family polymerases, including DinB and pol kappa, bypass certain types of DNA damage with greater proficiency than an undamaged template. Moreover, they do so relatively accurately. The ability to employ this mechanism to manage DNA damage may be especially important for types of DNA modification that elude repair mechanisms. For these lesions, translesion synthesis may represent a more important line of defense than for other types of DNA damage that are more easily dealtwith by other more accurate mechanisms.
收起
摘要 :
Translesion synthesis (TLS) is one of the DNA damage tolerance strategies, which have evolved to enable organisms to replicate their genome despite the presence of unrepaired damage. The process of TLS has the propensity to produc...
展开
Translesion synthesis (TLS) is one of the DNA damage tolerance strategies, which have evolved to enable organisms to replicate their genome despite the presence of unrepaired damage. The process of TLS has the propensity to produce mutations, a potential origin of cancer, and is therefore of medical interest. Significant progress in our understanding of TLS has come primarily from studies of the bacterium Escherichia coli, the budding yeast Saccharomyces cerevisiae and, more recently, human cells. Results from these analyses indicate that the fundamental mechanism of TLS and the proteins involved have been conserved throughout evolution from bacteria to humans.
收起
摘要 :
DNA double-strand breaks (DSBs) are generally accepted to be the most biologically significant lesion by which ionizing radiation causes cancer and hereditary disease. However, no information on the induction and processing of DSB...
展开
DNA double-strand breaks (DSBs) are generally accepted to be the most biologically significant lesion by which ionizing radiation causes cancer and hereditary disease. However, no information on the induction and processing of DSBs after physiologically relevant radiation doses is available. Many of the methods used to measure DSB repair inadvertently introduce this form of damage as part of the methodology, and hence are limited in their sensitivity. Here we present evidence that foci of gamma-H2AX (a phosphorylated histone), detected by immunofluorescence, are quantitatively the same as DSBs and are capable of quantifying the repair of individual DSBs. This finding allows the investigation of DSB repair after radiation doses as low as 1 mGy, an improvement by several orders of magnitude over current methods. Surprisingly, DSBs induced in cultures of nondividing primary human fibroblasts by very low radiation doses (approximately 1 mGy) remain unrepaired for many days, in strong contrast to efficient DSB repair that is observed at higher doses. However, the level of DSBs in irradiated cultures decreases to that of unirradiated cell cultures if the cells are allowed to proliferate after irradiation, and we present evidence that this effect may be caused by an elimination of the cells carrying unrepaired DSBs. The results presented are in contrast to current models of risk assessment that assume that cellular responses are equally efficient at low and high doses, and provide the opportunity to employ gamma-H2AX foci formation as a direct biomarker for human exposure to low quantities of ionizing radiation.
收起
摘要 :
Specialized DNA polymerases are required in both prokaryotic and eukaryotic cells for bypassing sites of template DNA damage that arrest high-fidelity DNA replication. Recent studies in the literature provide hints of the complexi...
展开
Specialized DNA polymerases are required in both prokaryotic and eukaryotic cells for bypassing sites of template DNA damage that arrest high-fidelity DNA replication. Recent studies in the literature provide hints of the complexity of DNA switching between polymerases for translesion DNA synthesis (TLS) and those for normal DNA replication.
收起